
PLANER 3-DOF SERIAL
ROBOT - Kinematics

Implementation in
LinuxCNC

Prof. Rudy du Preez
SA-CNC-CLUB

January 29, 2014

Planer Serial Arm Robot Kinematics 1

Figure 1: Vismach model of Robot3

1 PLANER 3-DOF ROBOT ARM

In this section we deal with the simplest possible serial robot arm in a 2-dimensional
plane with three joints or degrees-of-freedom. With such an arm you can measure
positions using forward kinematics or you can machine using forward and inverse kine-
matics, all in one plane.

We develop the kinematics transformations for a 3-dof robot and include some exam-
ples. We then show how this can be implemented in LinuxCNC.

1.1 Configuration

The configuration of a 3-dof planer robot is shown in Fig. 2. The lengths of the 3 links
are given by a1, a2 and a3. The orientation in the x-y plane is defined by the three angles
th1,th2 and th3 (or θ1, θ2 and θ3)- these are also called joint angles.

The position of each joint ji is defined by the coordinates xi, yi. The end-effector’s
position and orientation is defined by xE, yE and the angle phi (or ϕ).

1.2 Forward Kinematics Transformation

For link1 we may write, with xB, yB the location of the robot’s fixed base:

Planer Serial Arm Robot Kinematics 2

x

Y
th3

th2

th1

a1

a2

a3
wrist

base

end-effector

(xy,z1)

(x2,y2)

(x3,y3)

phi
(xE,yE)

j1

j2

j3

Figure 2: Planer 3-dof serial arm

x1 = xB, y1 = yB (1)

For link2:
x2 = x1 + a1 · cos(θ1), y2 = y1 + a1 · sin(θ1), (2)

For link2:
x3 = x2 + a2 · cos(θ1 + θ2), y3 = y2 + a2 · sin(θ1 + θ2), (3)

After substitution of (1) and (2) into (3) we get:

x3 = xB + a1 · cos(θ1) + a2 · cos(θ1 + θ2), y3 = yB + a1 · sin(θ1) + a2 · sin(θ1 + θ2) (4)

so the wrist coordinates are defined.

We can go further and determine the end-effector position and orientation:

xE = x3 + a3 · cos(ϕ), yE = y3 + a3 · sin(ϕ), with ϕ = θ1 + θ2 + θ3 (5)

Using shorthand notations ci = cos(θi), si = sin(θi), and cij = cos(θi + θj), etc, we can
write the combined result:

xE = xB + a1 · c1 + a2 · c12 + a3 · c123
yE = yB + a1 · s1 + a2 · s12 + a3 · s123 (6)

Example 1

Given the joint angles (0, 90, -90), base position (0, 0), and link lengths (200,200,100),
we can calculate from (4) and (5)):

x3 = 0.0 + 200 · cos(0) + 200 · cos(0 + 90) = 200

y3 = 0.0 + 200 · sin(0) + 200 · sin(0 + 90) = 200

Planer Serial Arm Robot Kinematics 3

x

y

a1

a2

a3

a1*cos(th1)

th1

th1+th2

a1*sin(th1)

a2*cos(th1+th2)

a2*sin(th1+th2)

a3*sin(th1+th2+th3)

a3*cos(th1+th2+th3)

th1+th2+th3

th2

th3

Figure 3: x- and y-components of links

x

y

base

end-effector

200

200

100

(300,200)

Figure 4: Example 1: Planer 3-dof serial arm

and

xE = 200 + 100 · cos(0) = 300

yE = 200 + 100 · sin(0) = 200

or from (6):

xE = 0.0 + 200 · cos(0) + 200 · cos(0 + 90) + 100 · cos(0 + 90− 90) = 300

yE = 0.0 + 200 · sin(0) + 200 · sin(0 + 90) + 100 · sin(0 + 90− 90) = 200

ϕ = 0 + 90− 90 = 0

Planer Serial Arm Robot Kinematics 4

1.3 Matrix formulation of Forward Kinematics

We can write the forward transformation very compact using matrices. We define a
general forward transformation matrix for link i as follows:

i−1Ti(θi, ai) =

 cos(θi) −sin(θi) ai · cos(θi)
sin(θi) cos(θi) ai · sin(θi)

0 0 1

 =

 ci −si aici
si ci aisi
0 0 1

 (7)

then the combined transformation from the robot base to the wrist is two matrices
multiplied:

1T2 ·2 T3 =1 T3 (8)

or

1T3 =

 c1 −s1 a1c1
s1 c1 a1s1
0 0 1

 ·

 c2 −s2 a2c2
s2 c2 a2s2
0 0 1

 =

 c1c2 − s1s2 −c1s2 − s1c2 a1c1 + a2c1c2 − a2s1s2
s1c2 + c1s2 −s1s2 + c1c2 a1s1 + a2s1c2 + a2c1s2

0 0 1


which can be simplified to:

1T3 =

 c12 −s12 a1c1 + a2c12
s12 c12 a1s1 + a2s12
0 0 1

 (9)

1.4 End-effector Pose

To get the end-effector position and orientation (pose) we can do:
1T3 ·3 T4 =1 T4 (10)

which will give

1T4 =

 c123 −s123 a1c1 + a2c12 + a3c123
s123 c123 a1s1 + a2s12 + a3s123
0 0 1

 (11)

where s12 = sin(θ1 + θ2) and s123 = sin(θ1 + θ2 + θ3), etc.

Equation (11) gives the end-effector position and orientation relative to the base frame.
We can partition it into sub-matrices as follows: c123 −s123 a1c1 + a2c12 + a3c123

s123 c123 a1s1 + a2s12 + a3s123
0 0 1

 =

[
R q
0 1

]
(12)

then R is a rotation matrix that defines the orientation of the end-effector and q is a
position vector that defines its position:

R =

[
c123 −s123
s123 c123

]
, q =

[
qx
qy

]
=

[
a1c1 + a2c12 + a3c123
a1s1 + a2s12 + a3s123

]
(13)

Planer Serial Arm Robot Kinematics 5

1.5 General Form of Forward Kinematics

The general form of the forward kinematics transformation can be written as:

1Tn =1 T2 ·2 T3 · · ·n−1 Tn =

[
1Rn

1qn
0 1

]
(14)

where 1Rn is a rotation transformation matrix

1Rn =

[
cos(

∑n
i=1 θi) −sin(∑n

i=1 θi)
sin(

∑n
i=1 θi) cos(

∑n
i=1 θi)

]
=

[
ux wx

uy wy

]
=

[
cos(ϕ) −sin(ϕ)
sin(ϕ) cos(ϕ)

]
(15)

with ux, uy the direction cosines of the end-effector xE-axis and wx, wy the direction
cosines of the yE-axis. Also we have 1qn, a position vector:

1qn =

[∑n
i=1(ai · cos(

∑i
j=1 θj)∑n

i=1(ai · sin(
∑i

j=1 θj)

]
=

[
qx
qy

]
(16)

where qx, qy are the cartesian coordinates of the end-effector. ϕ is the orientation of the
end-effector with respect to the x-axis (see Fig. 2).

Example 2

Given the joint angles (30, 30, 20), base position (0, 0), and link lengths (200,200,100),
we can calculate from (6):

x3 = 0.0 + 200 · cos(30) + 200 · cos(30 + 30) = 200 · 0.866 + 200 · 0.5 = 273.21

y3 = 0.0 + 200 · sin(30) + 200 · sin(30 + 30) = 200 · 0.5 + 200 · 0.866 = 273.21

and from (5)

xE = 273.2 + 100 · cos(80) = 273.2 + 100 · 0.174 = 290.57

yE = 273.2 + 100 · sin(80) = 273.2 + 100 · 0.985 = 371.69

ϕ = 30 + 30 + 20 = 80

However, using (13) we can also calculate directly:[
qx
qy

]
=

[
200 · cos(30) + 200 · cos(60) + 100 · cos(80)
200 · sin(30) + 200 · sin(60) + 100 · sin(80)

]
=

[
290.57
371.69

]

1.6 Inverse Kinematics Transformation

We often want to calculate the joint angles for a given end-effector pose. Then we
need to perform an inverse kinematics transformation. We could do it numerically
using inverse matrices, however in CNC trajectory control we want the operations as
fast as possible, therefore it is better to solve for the joint angles trigonometrically.

Planer Serial Arm Robot Kinematics 6

x

y

base

end-effector

30

30

20

200

200

100

(290, 371.7)

Figure 5: Example 2: Planer 3-dof serial arm

Given the pose as qx, qy, ϕ, we can write the overall forward transformation for our 3-dof
serial robot in two different forms as follows, using (14-16):

1T4 =

 cos(ϕ) −sin(ϕ) qx
sin(ϕ) cos(ϕ) qy

0 0 1

 =

 c123 −s123 a1 · c1 + a2 · c12 + a3 · c123
s123 c123 a1 · s1 + a2 · s12 + a3 · s123
0 0 1

 (17)

We now find the coordinates of the wrist px = x3, py = y3 as follows, since ϕ = θ1+ θ2+
θ3:

px = qx − a3 · cos(ϕ) = qx − a3 · c123 (18)
py = qy − a3 · sin(ϕ) = qy − a3 · s123 (19)

With the wrist coordinates our above equation becomes:

1T4 =

 cos(ϕ) −sin(ϕ) px
sin(ϕ) cos(ϕ) py

0 0 1

 =

 c123 −s123 a1 · c1 + a2 · c12
s123 c123 a1 · s1 + a2 · s12
0 0 1


Equating the (1,3) and (2,3) elements of the the two matrices, we find:

px = a1 · c1 + a2 · c12 (20)
py = a1 · s1 + a2 · s12 (21)

or re-arranging

px − a1 · c1 = a2 · c12 (22)
py − a1 · s1 = a2 · s12 (23)

If we now take the square of each side and add them together, we get, since cos()2 +
sin()2 = 1:

p2x − 2pxa1c1 + a21c
2
1 + p2y − 2a1s1py + a21s

2
1 = a22 (24)

Planer Serial Arm Robot Kinematics 7

x

y

base

end-effector

elbow below

elbow above

th1(-psi)

th1(+psi)

a1

a2

a3

(px, py)

j1

j2

j3

Figure 6: Two possible solutions for θ1

or

c1px + s1py =
p2x + p2y + a21 − a22

2a1
(25)

To solve this equation for θ1, we define

px = rcos(β), py = rsin(β), r =
√
(p2x + p2y), r > 0 (26)

then
tan(β) =

py
px
, and β = tan−1 py

px
(27)

Substituting (26) into (25)we get:

c1cos(β) + s1sin(β) =
p2x + p2y + a21 − a22

2a1r
(28)

Let

ψ = cos−1(
p2x + p2y + a21 − a22

2a1r
) (29)

then
c1cos(β) + s1sin(β) = cos(θ1 − β) = cos(ψ) (30)

and θ1 = β + ψ or, since the cos−1 function is double valued, θ1 = β − ψ, ie.

θ1 = tan−1 py
px

± ψ (31)

The two possible solutions can be identified as:

• +ψ: joint 2 above the line from joint 1 to joint 3 (elbow above)

• −ψ: joint 2 below the line from joint 1 to joint 3 (elbow below)

Planer Serial Arm Robot Kinematics 8

These two configurations are shown in Fig. 5

Corresponding to each solution for θ1 we can solve for θ2 by expanding (22) and (23)
as follows:

px − a1c1 = a2(c1c2 − s1s2) = (a2c1)c2 − (a2s1)s2 (32)
py − a1s1 = a2(s1c2 + c1s2) = (a2c1)s2 + (a2s1)c2 (33)

Multiplying the first equation by s2 and the second one by c2 we find

c2(px − a1c1) = (a2c1)c
2
2 − (a2s1)s2c2 (34)

s2(py − a1s1) = (a2c1)s
2
2 + (a2s1)c2s2 (35)

or after adding together

c2(px − a1c1) + s2(py − a1s1) = a2c1 (36)

We now substitute

px − a1c1 = rcos(β), py − a1s1 = rsin(β) (37)

r =
√
(px − a1c1)2 + (py − a1s1)2 =

√
p2x + p2y − 2a1(pxc1 + pys1) + a21 = a2 (38)

then
c2cos(β) + s2sin(β) = cos(β − θ2) = c1 = cos(θ1) (39)

or
θ2 = β − θ1 (40)

with, from (37)

β = tan−1py − a1s1
px − a1c1

(41)

having solved for θ1 and θ2 the remaining angle θ3 can be found from

θ3 = ϕ− θ1 − θ2 (42)

Example 3

Using the data from Example 2, we have as given qx = 290.57, qy = 371.69, ϕ = 80 and
link lengths ai = (200, 200, 100). Using (18,19) we get

px = 290.57− 100 · cos(80) = 290.57− 17.4 = 273.21

py = 371.69− 100 · sin(80) = 371.69− 89.5 = 273.21

and with these values we get from (26,27)

r =
√
273.212 + 273.212 = 386.37, β = tan−1273.21

273.21
= 45.0

and from (26)

ψ = cos−1(
273.212 + 273.212 + 2002 − 2002

2 · 200 · 386.37
) = 15.0

Planer Serial Arm Robot Kinematics 9

hence

θ1 = β ± ψ = 45 + 15 = 600 (elbow above) or 45− 15 = 300 (elbow below)

Solving for θ2 we use (41,42)

β = tan−1273.21− 200 · sin(30)
273.21− 200 · cos(30)

= 600

and finally θ2 = β − θ1 = 60− 30 = 30o and θ3 = 80− 30− 30 = 20o.

1.7 Tool Movement

If we think of a tool being at the tip of the last link of the robot, ie. a welding or cut-
ting torch, a router cutter or a spray gun, then we can use the robot to perform such
operations. We would then need to describe a tool path in some way.

Three methods seems to be generally used:

• The tool path is achieved by movement of the joints, ie. by describing joint angles
θi as functions of time. This is the so-called ”joint mode”. This is however in
applications such as mentioned above not very useful.

• The tool path is achieved by describing the tool position and orientation in a pre-
defined frame or coordinate system which is parallel to the fixed base frame of
the robot. The base frame of the robot, ie. F1 is at joint 1 with coordinates X, Y .
These are also called ”world coordinates” and we then operate in ”world mode”.

• A third possibility is similar to the previous case but with a variable coordinate
system that can be set by positioning first in ”world mode” or ”joint mode” and
then setting that state as the current ”local” or ”tool” position and orientation (local
coordinates x, y). This can be called ”local mode” or ”tool mode” since we typically
work in a coordinate frame aligned with the current ”tool” attached to the end link
of the robot.

The first case of ”joint mode” is typically only used to position the robot arm before
starting an operation and this is done by ”jogging” using buttons or an MPG (not by a
GCODE program). Forward kinematics is used in this case to determine the coordi-
nates of the tool position and orientation after a ”joint mode” move.

The other two methods of path control are briefly discussed below. They make use of
inverse kinematics.

1.8 World mode path control

In this mode of control, the move from one position and orientation, called ”pose”, to
another pose is done by a command to the CNC controller (such as LinuxCNC) is given
by jogging or Gcode commands in ”world coordinates”, for example (restricted to the
X-Y plane):

Planer Serial Arm Robot Kinematics 10

X

Y

q

q'

t

o

po(Xo,Yo,Co)

Co

p = po + t = p(Xo+dX, Yo+dY, Co+dC)

dC

Co

dX

dY

xo

yo

yo

xo

x

y

(x, y) tool frame

(dX, dY, dC) world movements

(xo, yo) offset frame

Base frame

Figure 7: World coordinate move in the X-Y plane

G0 X100 move from current position to X=100, at rapid speed
parallel to ”world” X-axis.

G1 Y-20 F40 move from current position to Y=-20, at 40 mm/min
parallel to ”world” Y-axis.

G1 C20 F180 rotate tool from current position 20 degrees, at 180 deg/min
around local z-axis parallel to ”world” Z-axis.

G2 X30 Y0 R15 move from current position in the X-Y plane (G17 default) along an
arc with radius 15mm to the end point X30,Y0, clockwise

Note that the third command is for a rotation in the X-Y plane around the axis normal
to the plane at the current position. The rotation axis is a local axis parallel to the base
frame axis or ”world” coordinate axis Y. The local axis is at the current position of the
tool point.

It is convenient to work with a local coordinate frame which is still parallel to the fixed
base frame but with the origin re-positioned at a convenient point (on a work table or on
the object being operated on). This can be done with a G54 offset using the ”touch off”
facility in AXIS. Our movements are then in terms of ”relative” or ”offset” coordinates

The world coordinate tool movement is depicted in Fig. 7. The ”offset” pose is indicated
as po(Xo, Yo, Co) and the new pose after the move p(Xp, Yp, Cp) is then:

Xp = Xo +∆X

Yp = Yo +∆Y (43)
Cp = Co +∆C

The angle of rotation in the X-Y plane is denoted by C (around the local Z-axis).

Working in this ”world” mode is what comes standard with most multi-axis implemen-
tations in LinuxCNC.

Planer Serial Arm Robot Kinematics 11

X

Y

q

q'

t

o

po(Xo,Yo,Co)

Co

ct

Co

yt

xo

yo

yo

xo

x

y

(x, y) tool frame

(xt, yt, ct) tool movements

(xo, yo) offset frame

Base frame

xt

Figure 8: Tool coordinate move in the X-Y plane

1.9 Tool mode path control

In this mode of control, a change is made from the ”world” coordinate frame to a ”tool”
coordinate frame at some convenient point, so that the following X, Y, or C movements
(jogging or Gcode) are now in the new coordinate system. The new coordinate frame
can be positioned and rotated relative to the world coordinate frame.

Typical situations are where we need to keep the tool normal or parallel to some plane
or line in the X-Y plane which is not parallel to the ”world” frame.

The first step to work in this mode is to move the tool to a selected point and rotate
the tool coordinate frame into the new offset working frame. After setting this frame as
the offset frame all further movements will be relative to this frame. The offset frame
can be defined with the position and orientation relative to the world or base coordinate
system as Xo, Yo, Co or as a matrix:

1To =

 cos(Co) −sin(Co) Xo

sin(Co) cos(Co) Yo
0 0 1

 (44)

The new tool move relative to this working or offset coordinate system is defined by
xt, yt, ct and this can also be written in a transformation matrix:

oTt =

 cos(ct) −sin(ct) xt
sin(ct) cos(ct) yt

0 0 1

 (45)

Now with these two matrices we can get the effect of the new tool move in terms of the
world coordinates by the product of the two:

1Tt =
1 To ·o Tt (46)

Planer Serial Arm Robot Kinematics 12

or multiplied out:

1Tt =

 cCcc − sCsc −cCsc − sCcc Xo + cCxt − sCyt
sCcc + cCsc sCcc + cCcc Yo + sCxt + cCyt

0 0 1

 (47)

which can be reduced to:

1Tt =

 cos(Co + ct) −sin(Co + ct) Xo + cos(Co)xt − sin(Co)yt
sin(Co + ct) cos(Co + ct) Yo + sin(Co)xt + cos(Co)yt

0 0 1

 (48)

The matrix 1Tt contains all the information used as input to the inverse kinematics
calculation as described in section 1.6. Comparing the left hand side of (17) with (48),
we note that (48) represents a new pose:

qx = Xo + cos(Co)xt − sin(Co)yt

qx = Yo + sin(Co)xt + cos(Co)yt (49)
ϕ = Co + ct

Example 4

Given an offset point pose of (200,100,30), (denoting Xo, Yo, Co = ϕ) and a tool point
move in ”world” mode of (15, 20, 5), the new pose of the tool point would end up being
at, in accordance with (43):

Xp = Xo +∆X = 200 + 15 = 215

Yp = Yo +∆Y = 100 + 20 = 120

Cp = Co +∆C = 30 + 5 = 35

However, if we wanted to make the same move in ”tool” mode, with the tool coordinate
system defined by the offset pose, then we would use eqn. (49):

Xp = Xo + cos(Co)xt − sin(Co)yt = 200 + cos(30) · 15− sin(30) · 20 = 202.990

Yp = Yo + sin(Co)xt + cos(Co)yt = 100 + sin(30) · 15 + cos(30) · 20 = 124.821

Cp = Co + ct = 30 + 5 = 35

1.10 Kinematics component

The kinematics is provided in LinuxCNC by a specially written component in the C-
language. It has a standard procedure structure and is therefore normally copied from
some standard example from the library of components, and then modified.

The component is compiled and installed in the correct place in the file system by a
command such as:

sudo comp --install kinsname.c

Planer Serial Arm Robot Kinematics 13

(200,100,30)

20.00

15.00

24.82

(215,120,35)

(202.990,124.821,35)

Xw

Yw

35.00°

20.00

15.00

30.00°

5.00°

xt

yt

Figure 9: World and tool coordinate move in the X-Y plane

where ”kinsname” is the name you give to your component. The sudo prefix is required
to install it and you will be asked for your root password.

Once it is compiled and installed you can reference it in your config setup of your robot.
This is done in the .hal file of your config directory. The standard command

loadrt trivkins

is replaced by

loadrt robot3kins

where ”robot3kins” is the name of our kinsname. A further modification to the .hal file
is required (typically at the end of your initial template file), where we have to set the
DH parameters of the robot. In our 3-link robot the entries could be:

set robot DH parameters

setp robot3kins.DH-a1 300

setp robot3kins.DH-a2 400

setp robot3kins.DH-a3 150

An example of a kinematics component, applicable to our 3-link serial planer robot, is
given below. It has the following structure:

• A set of ”include” declarations which is need to link in other procedure of libraries

• A struct definition to define the ”hal” input links or pins. These are defined in your
.hal file.

• The ”kinematicsForward” procedure with its fixed parameter list (joints, pos, and
flags).

Planer Serial Arm Robot Kinematics 14

• The ”kinematicsInverse” procedure with its fixed parameter list (pos, joints, and
flags).

• The ”kinematicsType” procedure which defines that BOTH forward and inverse
kins are used. There are also other possibilities

• The ”rtapi app main” main program with its own include declarations and in which
the links to the HAL pins are defined.

/**

* Description: robot3kins.c

* Kinematics for planer 3 axis robot.

* This serial arm robot has the following DH parameters:

* DH_a1, DH_a2, DH_a3: lengths of the three serial links

* Further parameters:

* cmode: coordinate mode, ie. 0: "world" mode, 1: "tool" mode

* setoffs: 0: no action, 1: set current XYC as offsets Xo, Yo, and Co.

*

* Author: Rudy du Preez (SA-CNC-CLUB)

* License: GPL Version 2

*

**/

#include "kinematics.h"

#include "hal.h"

#include "rtapi.h"

#include "rtapi_math.h"

struct haldata {

hal_float_t *DH_a1;

hal_float_t *DH_a2;

hal_float_t *DH_a3;

hal_bit_t *cmode;

hal_bit_t *setoffs;

} *haldata;

double Xo = 0;

double Yo = 0;

double Co = 0;

//===

int printlog(int np, double f1, double f2, double f3, double f4)

{

// to print stuff in the /var/log/kern.log file-

// seems only type int can be printed!

int o1,o2,o3,o4;

Planer Serial Arm Robot Kinematics 15

o1 = f1; o2 = f2; o3 = f3; o4 = f4;

rtapi_print(">> %d %d %d %d %d\n",np, o1,o2,o3,o4);

return 0;

}

//===

int kinematicsForward(const double *joint,

EmcPose * pos,

const KINEMATICS_FORWARD_FLAGS * fflags,

KINEMATICS_INVERSE_FLAGS * iflags)

{

double a1 = *(haldata->DH_a1);

double a2 = *(haldata->DH_a2);

double a3 = *(haldata->DH_a3);

int setoffs = *(haldata->setoffs);

int cmode = *(haldata->cmode);

double th1 = joint[0];

double th2 = joint[1];

double th3 = joint[2];

double c1, s1, c12, s12, c123, s123;

double ux, uy, vx, vy;

double qx, qy, cw;

static int prnt = 0;

// convert degrees to radians

th1 = th1/180*M_PI;

th2 = th2/180*M_PI;

th3 = th3/180*M_PI;

c1 = cos(th1); s1 = sin(th1);

c12 = cos(th1+th2); s12 = sin(th1+th2);

c123 = cos(th1+th2+th3); s123 = sin(th1+th2+th3);

ux = c123;

uy = s123;

vx = -s123;

vy = c123;

qx = c1*a1 + c12*a2 + c123*a3;

qy = s1*a1 + s12*a2 + s123*a3;

cw = th1+th2+th3;

//

if (setoffs) {

Xo = qx; Yo = qy; Co = cw;

}

Planer Serial Arm Robot Kinematics 16

if (cmode) {

pos->tran.x = Xo + ux*(qx-Xo) + uy*(qy-Yo);

pos->tran.y = Yo + vx*(qx-Xo) + vy*(qy-Yo);

pos->c = cw/M_PI*180;

} else {

pos->tran.x = qx;

pos->tran.y = qy;

pos->c = cw/M_PI*180;

}

//

if (prnt > 0) {

printlog(1,qx,qy,Xo,Yo);

prnt = prnt - 1;

}

return 0;

}

//===

int kinematicsInverse(const EmcPose * pos,

double *joint,

const KINEMATICS_INVERSE_FLAGS * iflags,

KINEMATICS_FORWARD_FLAGS * fflags)

{

double a1 = *(haldata->DH_a1);

double a2 = *(haldata->DH_a2);

double a3 = *(haldata->DH_a3);

int cmode = *(haldata->cmode);

double Cmve = pos->c/180*M_PI;

double Xmve = pos->tran.x;

double Ymve = pos->tran.y;

double th1, th2, th3;

double cC, sC;

double ux, uy, vx, vy, px, py, qx, qy;

double r, k1, k2;

double c1, s1;

static int prnt = 0;

int n1 = 1;

//---

if (cmode) {

// tool coordinates

sC = sin(Co); cC = cos(Co);

ux = cC; vx = -sC;

uy = sC; vy = cC;

qx = Xo + ux*(Xmve-Xo) + vx*(Ymve-Yo);

Planer Serial Arm Robot Kinematics 17

qy = Yo + uy*(Xmve-Xo) + vy*(Ymve-Yo);

sC = sin(Cmve); cC = cos(Cmve);

ux = cC; vx = -sC;

uy = sC; vy = cC;

joint[3] = Xo;

joint[4] = Yo;

joint[5] = Co/M_PI*180;

joint[6] = Xmve-Xo;

joint[7] = Ymve-Yo;

joint[8] = (Cmve-Co)/M_PI*180;

//--

} else {

// world coordinates

sC = sin(Cmve); cC = cos(Cmve);

ux = cC; vx = -sC;

uy = sC; vy = cC;

qx = Xmve;

qy = Ymve;

//

joint[3] = Xo;

joint[4] = Yo;

joint[5] = Co/M_PI*180;

joint[6] = Xmve;

joint[7] = Ymve;

joint[8] = Cmve/M_PI*180;

}

//

px = qx - a3*ux;

py = qy - a3*uy;

//--

if (prnt > 0) {

printlog(2, Xmve, Ymve, Cmve/M_PI*180, 0);

printlog(3, ux*100, uy*100, vx*100, vy*100);

printlog(4, qx, qy, Xo, Yo);

prnt = prnt - 1;

}

//---

//--- th1

th1 = 0;

r = sqrt(px*px + py*py);

if (r == 0) {

// ’ERROR:--------- point not reachable’;

return 1;

}

Planer Serial Arm Robot Kinematics 18

k1 = atan2(py, px);

k2 = (px*px + py*py + a1*a1 - a2*a2)/(2*a1*r);

if (k2 > 1.0) {

// list(’ERROR:--------- point not reachable’);

return 1;

}

k2 = acos(k2);

if (n1 == 1) { th1 = k1 + k2;}

else { th1 = k1 - k2 + M_PI;}

//

c1 = cos(th1); s1 = sin(th1);

//--- th2

th2 = 0;

k1 = py - a1*s1;

k2 = px - a1*c1;

th2 = atan2(k1, k2) - th1;

//

//--- th3

th3 = atan2(uy, ux) - th1 - th2;

//

joint[0] = th1*180/M_PI;

joint[1] = th2*180/M_PI;

joint[2] = th3*180/M_PI;

return 0;

}

//===

KINEMATICS_TYPE kinematicsType()

{

return KINEMATICS_BOTH;

}

#include "rtapi.h" /* RTAPI realtime OS API */

#include "rtapi_app.h" /* RTAPI realtime module decls */

#include "hal.h"

EXPORT_SYMBOL(kinematicsType);

EXPORT_SYMBOL(kinematicsInverse);

EXPORT_SYMBOL(kinematicsForward);

MODULE_LICENSE("GPL");

int comp_id;

int rtapi_app_main(void) {

int res = 0;

Planer Serial Arm Robot Kinematics 19

comp_id = hal_init("robot3kins");

if(comp_id < 0) return comp_id;

haldata = hal_malloc(sizeof(struct haldata));

if((res = hal_pin_float_new("robot3kins.DH-a1", HAL_IO,

&(haldata->DH_a1), comp_id)) < 0) goto error;

if((res = hal_pin_float_new("robot3kins.DH-a2", HAL_IO,

&(haldata->DH_a2), comp_id)) < 0) goto error;

if((res = hal_pin_float_new("robot3kins.DH-a3", HAL_IN,

&(haldata->DH_a3), comp_id)) < 0) goto error;

if((res = hal_pin_bit_new("robot3kins.cmode", HAL_IN,

&(haldata->cmode), comp_id)) < 0) goto error;

if((res = hal_pin_bit_new("robot3kins.setoffs", HAL_IO,

&(haldata->setoffs), comp_id)) < 0) goto error;

hal_ready(comp_id);

return 0;

error:

hal_exit(comp_id);

return res;

}

void rtapi_app_exit(void) { hal_exit(comp_id); }

Note that two extra HAL pins have been added: robot3kins.cmode and
robot3kins.setoffs. The ”cmode” pin should be connected to a VCP button (toggle)
that can be used to change between ”tool” and ”world” coordinates. The ”setoffs” pin
is connected to a VCP button to trigger an ”offset” of coordinates.

To work in ”tool” coordinates with this component the following steps is normally re-
quired (using the AXIS gui with an added VCP):

1. Move in ”world” mode to a offset pose Xo, Yo, Co.

2. Do a ”touch off” for all three axes X,Y,C.

3. Activate the ”set offset” button.

4. Toggle the ”tool” mode button to change into tool mode.

5. Perform moves in tool coordinates until finished.

6. Move to zero tool pose.

7. Toggle ”tool” mode button to go back to ”world” mode.

Planer Serial Arm Robot Kinematics 20

1.11 VISMACH simulation model

Vismach is a tool to show a 3D simulation of a physical machine in operation.

Vismach.py is a python library to draw objects in a simulation window. It is located in
/usr/lib/pymodules/python2.6. The simulation program itself is a script based on vis-
mach.py. The scripts are located in /usr/bin. The .hal file of your machine in your
/home/user/linuxcnc/config/yourmachine loads this script with ”loadusr” as a HAL com-
ponent and connects the joints. The following items are described in the script:

• geometry is defined or loaded from a .stl or .obj file

• placement of geometry (translation and or rotation)

• joints are defined and connected to HAL PINs

• colour is defined

Some of the geometric solids that can be directly defined are:

part = CylinderX(x1,r1,x2,r2) : a cylinder along X-axis from x1 to x2 with radiuses r1
and r2.

part = CylinderY(y1,r1,y2,r2) : a cylinder along Y-axis from y1 to y2 with radiuses r1
and r2.

part = CylinderZ(z1,r1,z2,r2) : a cylinder along Z-axis from z1 to z2 with radiuses r1
and r2.

part = Box(x1,y1,z1, x2,y2,z2) : a rectangular box between opposite corners x1,y1,z1
to x2,y2,z2.

Parts can be imported as STL files:

part = AsciiSTL(”filename”) : the part modelled as an STL file is loaded; example:
spindle = AsciiSTL(”spindle.stl”).

Some transformations can also be done:

part = Translate(parts,x,y,z) : translate parts to x,y,z.

part = Rotate(parts,th,x,y,z) : Rotate parts th degrees around axis defined by x,y,z.

part = HalTranslate(parts,comp,var,x,y,z) : Translate parts along x,y,z vector. Dis-
tance is defined by a Hal pin ”var” of component ”comp”.

part = HalRotate(parts,comp,var,th,x,y,z) : Rotate parts by th degrees around axis
defined by x,y,z. Th is scaled by a Hal pin ”var” of component ”comp”.

Parts can be grouped together to form subassemblies:

Planer Serial Arm Robot Kinematics 21

part = Collection(parts) : the listed parts are collected to move together.

The tool position is ”captured” and the parts or collections can be given colours as
follows:

part = Capture() : the position (tool or work) is captured.

part = Color(red,green,blue,alpha,parts) : RGB color code is used plus trans-
parency or blending - all values between 0 and 1.

The last entry in the script is the ”main” entry:

main(model, tool, work, size) : define parts and window size.

If ”parts” is a list then it must be included in square brackets, ie. [table,handle,screw].

For our 3-joint serial robot the following is an example of a Vismach script. The link
lengths a1=300, a2=400, and a3=150 mm.

#!/usr/bin/python

vismach gui for robot-3

#------------------ imports-----------------------------

from vismach import *

import hal

#-------------------HAL pins----------------------------

c = hal.component("robot3gui")

c.newpin("joint1", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("joint2", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("joint3", hal.HAL_FLOAT, hal.HAL_IN)

c.ready()

#-------------------model-------------------------------

finger and axes

tooltip = Capture()

finger = CylinderX(0, 5, -50, 10)

xaxis = Color([1,0,0,1],[CylinderX(0,3,100,3)])

yaxis = Color([0,1,0,1],[CylinderZ(0,3,100,3)])

zaxis = Color([0,0,1,1],[CylinderY(0,3,-100,3)])

finger = Collection([tooltip, finger, xaxis, yaxis, zaxis])

link 3

link3 = CylinderX(-150,15,-50,15)

joint3 = CylinderY(-25,25,25,25)

joint3 = Translate([joint3],-150,0,0)

link3 = Collection([link3, joint3])

Planer Serial Arm Robot Kinematics 22

link3 = Color([0.0,0.9,0.9,1],[link3])

link3 = Collection([finger,link3])

move link3 so axis 3 is at origin

link3 = Translate([link3],150,0,0)

make joint3 rotate

link3 = HalRotate([link3],c,"joint3",-1,0,1,0)

move back to position

link3 = Translate([link3],-150,0,0)

link 2

link2 = CylinderX(-550,20,-150,20)

joint2 = CylinderY(-30,30,30,30)

joint2 = Translate([joint2],-550,0,0)

link2 = Collection([link2, joint2])

link2 = Color([0.6,0.4,0.9,1],[link2])

link2 = Collection([link2,link3])

move link2 so axis 2 is at origin

link2 = Translate([link2],550,0,0)

make joint2 rotate

link2 = HalRotate([link2],c,"joint2",-1,0,1,0)

move back to position

link2 = Translate([link2],-550,0,0)

link 1

link1 = CylinderX(-850,20,-550,20)

joint1 = CylinderY(-30,30,30,30)

joint1 = Translate([joint1],-850,0,0)

link1 = Collection([link1, joint1])

link1 = Color([0.0,1.0,0.0,1],[link1])

link1 = Collection([link1,link2])

move link1 so axis 1 is at origin

link1 = Translate([link1],850,0,0)

make joint1 rotate

link1 = HalRotate([link1],c,"joint1",-1,0,1,0)

move back to position

link1 = Translate([link1],-850,0,0)

add a base

base = CylinderZ(-200,60,-15,30)

base = Color([0.6,0.2,0.4,1],[base])

base = Translate([base],-850,0,0)

add a floor

floor = Box(-100,-100,-220,100,100,-200)

floor = Translate([floor],-850,0,0)

work = Capture()

model = Collection([link1, base, floor, work])

Planer Serial Arm Robot Kinematics 23

main(model, tooltip, work, 1000)

The Vismach model resulting from this script is shown in Fig. 1.

