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1 3D ROBOT ARM

In this section we deal with the typical serial arm robot in 3-dimensional space with six
joints or degrees-of-freedom.

With such an arm you can measure positions using forward kinematics or you can
perform machining operations using forward and inverse kinematics.

A typical serial arm robot is shown on the front page, and also schematically in Fig.
7-10. In references [2-4] there are many examples of such robots with various config-
urations.

In general a 3D robot arm has n joints and n + 1 links. Numbering of links starts with 0
for the fixed base link to n for the end-effector link. Numbering of the joints start with 1
for the joint connecting the first movable link to the base link, and increases sequentially
up to n. Therefor the link i is connected between the lower link i — 1 by joint i and the
next link i + 1 by joint i + 1, as shown in Fig. 1.

Fig. 1 shows the links i — 1, i and ¢ + 1 of a serial robot, along with joints i — 1, ¢ and
i + 1. Every joint has an axis, which may be translational or rotational. To relate the
kinematic information of the robot components, we attach a local coordinate frame F;
to each link 7 at joint i + 1 based on the Denavit-Hartenberg (DH) method (see [2-4]):

1. The z;-axis is aligned with the i + 1 joint axis.

2. The x;-axis is defined along the common normal between the z;_; and z; axes,
pointing from the z;_; to the z;-axis.

3. The y;-axis is determined by the right-hand rule.

In the DH method the origin o, of the frame F;(o;, z;, y;, z;) attached to link  is placed at
the intersection of the joint axis i + 1 with the common normal between the z;_; and z;
axes.

Four parameters (a;, o, d;, 0;), called the DH parameters, are used to define the geom-
etry of a link i:

1. Link length a;: the distance along the x;-axis between the z;_; and z; axes.
2. Link twist «;: the rotation angle about the z;-axis between the z;_; and z; axes.
3. Joint distance d;: the distance along the z;_;-axis between the z;_; and z; axes.

4. Joint angle 0;: the rotation angle about the z;_;-axis between the x;_; and x; axes.

Figs. 7-10 show how the DH parameters are applied to a typical robot.
The DH parameters are usually defined for a specific robot in a DH-table, for example:
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Figure 1: Links and DH parameters
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For the robot depicted in Fig. 2 the DH parameters can be reduced to:

Link a; Q; d; | 6;

1 0] 9 | 0|6
2 Q9 0 d2 02
3 as 90 0 93
4 0 | —90 | dy | 04
5 0] 90 | 0|6
6 0 0 |ds| b6

1.1 Forward Transformation for a Link

The coordinate frame F; is fixed to link ¢ and frame F;_; is fixed to link ¢« — 1. To
transform F; to F; — 1 we can define a transformation matrix ~'7; as follows, using the
DH parameters if link i:

cos(0;) —sin(0;)cos(a;)  sin(0;)sin(ay)  a;cos(6;)

i _ sin(0;)  cos(0;)cos(a;)  —cos(0;)sin(a;) a;sin(6;)
! sin(a;) cos(a;) d;
0 0 1



|3D Serial Arm Robot Kinematics 3]

or in abbreviated form

cl; —sbico;  sb;s0;  a;ch;

i1 _ | 80 e —cbisa; a;sh;
Ti = 0 sy coy; d; (1)
0 0 0 1

This is a homogeneous transformation matrix, and has an inverse of the form:

cé’i 892‘ 0 —a;

i fimln—1 —sb;co;  cBico; sy —disq;

Tia=(TT)" = s;sa;  —cbisay coy  —dico; (2)
0 0 0 1

If we define the frame F;_; = (x;_1,vi-1,2-1) and frame F; = (z;,v;, z;) then we may
write

Tiq ch; —sbico; sO;s0  a;ch; T
Yior | _ | b cbicoy  —cbisa; aist; | | i (3)
Zi—1 - 0 SQy; CQ; dz Zi
1 0 0 0 1 1
or the inverse form
Z; cGi 891' 0 —Q; Ti—1
vi | | —sbicay cbica;  sa;  —disay | Y (4)
z || sbisa;  —cbisoy; co;  —dicoy Zi1
1 0 0 0 1 1

To transform forward over a number of links, we just have to multiply the link matrices
sequentially, ie.
OTI - T2 2 T3 ol Tn =0 Tn (5)

1.2 Forward Transformation of Typical 6-axis Robot

To simplify the equations somewhat we will present the equations for a typical 6-axis
robot. The configuration is chosen so that in will include types such as PUMA, ABB,
MOTOMAN, KUKA and FANUC. For this robot, depicted in Fig. 2, the DH parameters
can be reduced to:

Link a; Q; d; | 0;
aq 90 d1 61

as 90 0 93
0 | —90 | dy | 04
0] 90 | 0|6
0

OO =
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Figure 2: Robot links and DH parameters- zero position

With these parameters the 7" matrices of the robot are obtained as:

C1 0 S1 aicy Co —So 0 a9Co C3

o _ | 51 0 —c1 arsy 1| S22 0 agsy o | S3
=191 o dy e do =1
0O 0 O 1 0 0O 0 1 0

Cyq 0 —S84 0 Cs 0 S5 0 Cg

3 o S4 0 Cyq 0 4 . S5 0 —Cs 0 5 . S6
=y 21 o dy =191 0 o Ts 0
0O O 0 1 0O 0 0 1 0

o= O O

53

O = OO

a3C3
a3s3

_ o O O

(7)

Note that in T we have set ds = 0 since we first want to transform only up to the wrist.
Following Paul and Zhang [1] we also determine the product 75 =! T; -2 Tj:

c3 0 S93  agcy + azcos

17, = So3 0 —co3  azsy + assqs
0 1 0 ds
0 0 0 1

The position and orientation of the wrist are given by

W(; :0 T1 A T3 3 T4 '4 T5 2 T6
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We evaluate this product from right to left and define intermediate matrices U; which

will also be used for the inverse transformation.

Us =" T, Us=*Ts-Us, Uy=T,
U3 :2 T3 : U47 U2 :1 T3 : U47 Ul :0 Tl
Thus
Cg —Sg 0 0 C5Cg —C5Sg
. S6 Cg 00 S5C6 —S586
=109 0 10 Us = Se Ce
0 0 01 0 0
caUsi1 — 8486 caUsia — Ssac6  c4S5
U, = 54Us11 + €486 54Us12 + cace 5455
—Usn —Usa Cs
0 0 0
csUsn1 — 53Usa1 c3Usia — s3Usa  c3Uais + s3cs
U, = s3Us11 + c3Usa1 83Us12 + c3Usze  s3Usiz — 3¢5
Usn1 Uj2o Ujos
0 0 0
co3Usi1 — 523Us21  ca3Us1a — 523Us22  ca3Uais + S23C5
U, = S93Us11 + c23Us21  S23Us12 4 c23Usga  S23U413 — ca3C5
Uyoq Uiao Uias
0 0 0
cUain + 51Us21 c1Uzio + 51Us22 1Uz1z + 51Us23
U, = 510211 — c1Uso1 51U212 — c1Us22  51U213 — c1Usas
Usay Usao Usaz
0 0 0
If we define Eg, the end-effector matrix as
Es — Uy Uy Wy Gy
uZ UZ wZ qZ
O 0 0 1

then the wrist position p,, p,, p. can be found using

Dz qz — deac
Py | _ | Oy~ dewy
P q. — d()‘wz
1 1

: U57
. U2

(11)

_— o O O

dy
1

d483 + ascs
—d463 + asSs
0
1

(13)

+d4823 + as3Co3 + a92Co
—d4623 + a3S923 + a989

ds
1
(14)
c1Us1s + dosy + a1
51U914 — daci + a15,
Usaq + dy
1
(15)
(16)
(17)
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so that the wrist orientation and position is defined by

Uy Vg Wz Pz

We= | v “v Py | _yp (18)

Uy Vy W, Py

0 0 0 1

The components of Wy can be obtained directly from (15). Note that we used local
variables U;;;, where i refers to the ith U matrix and j and k refer to the jth row and kth
column of U;, which in this case is the same position as the wrist of the robot arm.

The variables u,, u,, u, v, vy, v,, Wy, wy, w, are the direction cosines of the end-effector
and wrist axes (defining its orientation), while p,, p,, p. are the cartesian coordinates of
the wrist. The position of the end-effector some distance dg away from the wrist can be
easily determined separately and is dealt with later.

These are the required results of a complete forward transformation, given all the DH
parameters of the 6 links of our typical robot (except for the moment dg).

1.3 Inverse Transformation of the Robot

We now want to solve for the joint angles 6, to 64 given the wrist position and orienta-
tion defined by Ws. Following [1] we first obtain a sequence of V; transformations by
successively pre-multiplying Wy by each of the (“~!7;)~! inverse matrices.

We start with
We=Vy =04 (19)
and then consecutively

T W =V = Uy,
(') Vi =Vo=Us,
(")™" Vi = Vs =Uy, (20)
CTy) Vs =Vy=1Us,
(T5)t Vi = V5 =Us.

(21)

=N~

where V1, are obtained by substituting the components of the k-th column of E; for
X,Y,Z Mwith M =0fork=1,2,3and M =1 for k = 4.

Pre-multiplying W5 by (°71)~! we obtain:

C1 S1 0 —a X ClX + 81Y - alM
0 0 1 —d Y Z —diM
sT —c1 0 0 | | Z | s1.X —aY
0O 0 0 1 M M

Vi =
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Pre-multiplying V; by (*73)~! we obtain:

ca Ss2 0 —ap Vi Vi + s2Vig — aaM
| —=s2 2 0 0 Vie | —59V11 + caVio
S0 001 —dy || Vs | T Vig — dyM (23)
0O 0 0 1 M M
Pre-multiplying V; by (*73)~! we obtain:
Co3  S23 0  —(ascs+ as) Vi co3Vi1 + S23Via — (agcs + as) M
Voo — 0 0 -1 —dy ' Vio _ Vis — do M
3 Se3 —C3 0 —Aa2S3 Vi S93Vi1 — ca3Via — agss M
0 0 0 1 M M
(24)
Pre-multiplying V5 by (37)~* we obtain:
Cy4 S4 0 0 Va1 caVa1 + 54V3o
0 0 -1 dy Vi —Vas +dy M
o . — 2
Vay —s4 +cg 0 O Vi3 —54V31 + 4 Vo (25)
0 0 0 1 M M
Finally , pre-multiplying V, by (*T5)~! we obtain:
cs s5 0 0 Vi cs Vi + s5Vag
10 0 10 Vig | Vis
Ve = ss —cs 0 0 Vis | | 5V — e5Vae (26)
0 0 01 M M

The solution is now found by equating V, = U, Vi = Us, Vo = Us, V3 = Uy, Vy = Us and
Vs = Us. Equating V, and Uy :

X U + 51Us21 c1Uziz + 51Us22 c1Usiz + 51Us3  c1Uzis + dasi + aicy
Y o 510211 — c1Uso1 51U212 — c1Us2z 51U213 — iUz 51U214 — daci + 151
zZ | Uso: Uszo Usa3z Usos + dy
M 0 0 0 1
(27)

To solve for ; we equate the (1,4) and (2,4) elements:
Pz = c1(Uz1a + aq) + dasy
py = s1(Ua1s + a1) — dacy (28)

Multiplying the first by s; and the second by c¢;, and subtracting the second from the
first, we find:

$1Pe — C1py = do (29)
This equation can be solved by the substitutions:

rsing =p,, rcosp =p,, With r>0 (30)

r=+4/pi+p; and ¢:tcm’1@ (31)

Pz

Then
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In a computer program we would use the atan2 function which returns values in the
range —m < ¢ < 7. Making the substitution into (29) we obtain

d
s1c08¢ — c18itng = sin(fy — ¢) = =2 (32)
and J 4
0, = tan 2% 4 sin7 122 or 0, = tan Y 5in1 2 4 g (33)
Pz r Dz r

since the sin~! function is double valued. The two solutions correspond to the shoulder
of the robot appearing on the right- and left-hand sides respectively. For a solution to
exist r > ds.

Next, to solve for 0, we equate V; with Us.
Vi
Via

Vis
M

co3Usi1 — 523Usa1  co3Usia — 523Use  cosUsis + Sa3Cs  daSas + ascas + agcy
So3Us11 + Cc23Uso1  s23Us12 + C23Us90  S23Us13 — coscs  —dycas + agsas + asss

U421 U422 U423 d2
0 0 0 1
(34)
Again we equate elements (1,4) and (2,4) to obtain:
Viig = dySa3 + azcoz + ascy
Visa = —dacos + azsas + azsy
or re-arranging:
Vi —agco = dyszs + azcos
Vigg — a8y = —dyco3 + azsas3 (35)
Squaring both sides and adding, we obtain
a3 —dj — a3 + Vi, + Vi
c2Vitg + 89Vigs = =2 ! ; s = (36)
a2
Substituting again with
rsing = Viay, 1cos¢ = Viyy, With r>0 (37)

then
r=+V2,+ V2, and ¢-= tcm_l“;lﬂ (38)
114
We substitute (37) into (36) and get

2_d2_ 2 VZ V2
605(62—¢):a2 1— a3+ Vgt 124 _ (39)

2a,T
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If the value of k > 1 then the defined position is beyond the reach of the robot. Defining

P = COS_1<I<L) (40)
then
—1 ‘/124
Oy = tan™ " —— + 1 (41)
Vil

If the +4 solution is used for a right-handed configuration of joint 1, then the elbow of
the robot is above the line from the shoulder to the wrist, whereas for the — solution it
is below the line. The situation is the opposite for a left-handed configuration of joint 1.

The next joint angle 05 is obtained by equating V5 with Us:

Vor Usii Usiz Usis  dyss + ascs
Voo _ Usar Usye Usges —dycs + azss (42)
Vas Ussi Usza Usss 0
M 0 0 0 1
Equating elements (1,4) and (2,4) again we obtain
Vora = dysz+ ascs
Vaou = —dacs + azss (43)
As before, we substitute
as = rsing, dy=rcosp with r >0 (44)
then .
r=+ya3+di and ¢= tan_ld—i (45)
so that
$3c08¢ + c3sing = sin(¢ + 03) = Voru/r
—c3c08¢p + sgsing = —cos(p + 03) = Vaou /1
from which we obtain
Vs Vs
tan(p + 03) = — ¢+ 0y = tan ' —2 (46)
—Vaou —Vany
and "
0y = tan ' —2L — tan~1%2 (47)
—Vaoy dy
We next obtain 6, from V5 = U, or
Vai Ui Upz cass 0O
Via Usr Ujs2 84585 0
— 48
Vas Upi Usza 5 dy (48)
M 0 0 0 1
so that v
Vi3 = €485, V33 = 5485 O tanby = % (49)
Vais
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One again there are two solutions depending on the sign of ss:

0, =

0, =

-1 Ve
‘/2%13
1 Ve

‘/313

tan s5 >0

tan s5 <0

and 4, is undefined or arbitrary if s5; = 0. To evaluate V3,3 and V323 we may use

Viis = ciw, + sjwy

Vaizs = ca3Viig + s23Via3 = co3Viig + sasw,

Vaas = Visz = sjw, — C1Wy

For the next angle we use V, = U; or

caVa1 4 54V Usii Usi2  ss
—Vas + dyM _ Usor Usza —c5
—54V31 4 4 Vg Ussi Ussa 0

M

from which

_ o O O

0 0 0

S5 = c4V313 + 54V303

cs = S23Vi13 — ca3Vias = sa3Vi13 — cosw,

so that

Finally with V5 = Us:

~155
Cs

05 = tan

cs Vi + s5Vao Ce —S6

Vis

s5Va1 — ¢5Vag 0 0

M
from which

S6

Ce

so that

»n

(=2}

e}

=)
o = O O
_— o O O

Vis1
= ¢5Vann + 55Vaon
S6

O = tan *=
Ce

The components can be evaluated using:

Vin
‘/131
Véll
Vs
‘/411
‘/421
‘/431

= ClUg + S1Uy

= S1Ug — ClUy

= co3Vin + Sa3u

= 523Vi11 — Casu,
c4Va11 + s4Vi31

= —Va3

= —54V311 +cyViz

(52)

(58)
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1.4 End-effector Position

We have left out the position of the end-effector from the kinematic transformations
treated above. Its position ¢,, ¢,, ¢. can be determined from the wrist position p,, p,, p.
by a forward transformation:

Gz Pz + d6wx
Gy | _ | byt dewy
1 1

For the inverse transformation, given ¢, ¢,, ¢. and Es we find

Dz qz — dem

Py | _ | 4y — dewy

D N q> — d6wz (60)
1 1

1.5 End-effector Orientation

There are a number of ways to describe the orientation of the end-effector: using the
homogeneous matrix Es defined above, or using rotation about selected axes.

A common method is to use roll-pitch-yaw angles denoted as ¢,, ¢,, ¢, for rotations at
the end-effector position ¢., ¢,, ¢. about z,y, z axes which are parallel to the fixed base
axes.

Given ¢,, ¢,,, ¢, we can determine the E; matrix, ie. the matrix which defines the posi-
tion and orientation of the end-effector at ¢, ¢, ¢. as:

Uy Vyp Wz Gy CpCy  SpSpCy — CrSy  CrSpCy + SpSy  Qy

B = Uy Vy Wy Gy | _ | CpSy SrSpSy + CrCy  CrSpSy — SpCy Gy 61)
U, UV W, ( _Sp Srcp C'I'Cp q:
0O 0 0 1 0 0 0 1

where s, = sing,, ¢, =cos¢,, S, = Sing,, c, = cos,, etc.

The roll, pitch and yaw angles can also be determined from a given E matrix as follows,
for ¢, not equal to £90 degrees:

o, = atan2(v,,w,) (62)
Gp = atan2(—u.,/u, - u, +u, - u,)
¢, = atan2(uy,u,)

If ¢, = £90 degrees, then for ¢, = 90 :
¢, = atan2(v,,w,), ¢, =7/2, ¢, =0 (63)
and for ¢, = —90 :
¢ = —atan2(v,,w,), ¢, =—-7/2, ¢, =0 (64)
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1.6 Configuration

Given the joint angles and the end-effector matrix Es of a PUMA type robot, the con-
figuration can be determined as follows

e Configuration left or right can be determined by the sign of

0, = tan’lp—y _T (65)
Pr 2

A positive sign indicates a left and a negative sign a right shoulder.

e Configuration elbow-up or elbow-down can be determined by the sign of

1 Vi
0y = tan ' —= 66
5 Vi (66)

If the shoulder is left a positive sign here corresponds to elbow-down and a neg-
ative sign to elbow-up.

If the shoulder is right a positive sign here corresponds to elbow-up and a nega-
tive sign to elbow-down.

e Configuration wrist-flip corresponds to a negative sinf; and wrist-no-flip to a pos-
itive sinds.

1.7 Tool Movement

If we think of a tool being at the tip of the last link of the robot, ie. a welding or cut-
ting torch, a router cutter or a spray gun, then we can use the robot to perform such
operations. We would then need to describe a tool path in some way.

Three methods seems to be generally used:

e The tool path is achieved by movement of the joints, ie. by describing joint angles
0; as functions of time. This is the so-called "joint mode”. This is however in
applications such as mentioned above not very useful.

e The tool path is achieved by describing the tool position and orientation in a pre-
defined frame or coordinate system which is parallel to the fixed base frame of the
robot. The base frame of the robot, ie. F1 is at joint 1 with coordinates XY, 7.
These are also called "world coordinates” and we then operate in "world mode”.

¢ A third possibility is similar to the previous case but with a variable coordinate
system that can be set by positioning first in "world mode” or ”joint mode” and
then setting that state as the current "local” or "tool” position and orientation (local
coordinates x,y,z). This can be called "local mode” or "tool mode” since we
typically work in a coordinate frame aligned with the current "tool” attached to the
end link of the robot.
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The first case of ”"joint mode” is typically only used to position the robot arm before
starting an operation and this is done by ”jogging” using buttons or an MPG (not by a
GCODE program). Forward kinematics is used in this case to determine the coordi-
nates of the tool position and orientation after a ”joint mode” move.

The other two methods of path control are briefly discussed below. They make use of
inverse kinematics.

1.8 World mode path control

In this mode of control, the move from one position and orientation, called "pose”, to
another pose is done by a command to the CNC controller (such as LinuxCNC) is given
by jogging or Gcode commands in "world coordinates”, for example:

GO0 X100 move from current position to X=100, at rapid speed
parallel to "world” X-axis.
G1 Y-20 F40 move from current position to Y=-20, at 40 mm/min
parallel to "world” Y-axis.
G1 C20 F180 rotate tool from current position, at 180 deg/min
around local z-axis parallel to "world” Z-axis.
G2 X30 YO R15 move from current position in the X-Y plane (G17 default) along an
arc with radius 15mm to the end point X30, YO, clockwise

Note that the third command is for a rotation in the X-Y plane around the axis normal
to the plane at the current position. The rotation axis is a local axis parallel to the base
frame axis or "world” coordinate axis Z. The local axis is at the current position of the
tool point.

It is convenient to work with a local coordinate frame which is still parallel to the fixed
base frame but with the origin re-positioned at a convenient point (on a work table or
on the object being operated on). This can be done with a G54 offset using the "touch
off” facility in AXIS. Subsequent movements are then in terms of "relative” or "offset”
coordinates

If the "offset” pose is indicated as p,(X,, Y,, Z,, A,, B,, C,) and the new pose after the
move p(X,,Y,, Z,, Ay, By, C,) is then:

X, = X,+AX

Y, = Y, +AY (67)
Z, = Zo+AZ
A, = A, +AA
B, = B,+AB
C, = C,+AC

Working in this "world” mode is what comes standard with most multi-axis implemen-
tations in LinuxCNC.

In Fig. 3 such a "world” mode move is shown in 2 dimensions for clarity.



|3D Serial Arm Robot Kinematics 14

(x, y) tool frame

\ <7
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X0
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(xo, yo) offset frame

V

o) Base frame

Figure 3: World coordinate move in the X-Y plane

1.9 Tool mode path control

In this mode of control, a change is made from the "world” coordinate frame to a "tool”
coordinate frame at some convenient point, so that the following X, Y,- - - C movements
(jogging or Gcode) are now in the new coordinate system. The new coordinate frame
can be positioned and rotated relative to the world coordinate frame.

Typical situations are where we need to keep the tool normal or parallel to some plane
or line which is not parallel to the "world” frame.

The first step to work in this mode is to move the tool to a selected point and rotate
the tool coordinate frame into the new offset working frame. After setting this frame as
the offset frame all further movements will be relative to this frame. The offset frame
can be defined with the position and orientation relative to the world or base coordinate
system as X,,Y,, Z,, A,, B,, C, or as a matrix (refer to (61)):

Uxo VxXo WXo (Xo CBCC SASBCC — CASC  CASBCC +Sasc X,
1 Uyo Vyo Wyo (Qvo | | CBSC SASBSC + CACCc CASBSCc — SACC Y,
¢ Uzo VZo Wizo (Zo —5B 5ACB cacp Z,
0 0 0 1 0 0 0 1
(68)

where s, = sinA,, ¢4 = cosA,, etc.

The new tool move relative to this working or offset coordinate system is defined by
e, Ui, 2t Az, by, ¢ @and this can also be written in a transformation matrix:

Uy Uy Wz Ty CpCe  SaSpCc — CaSce CaSpCe + SaSe T

OE — Uy Vy Wy Yt — CbSe  SaSbSe T CaCe  CaSbSe — SaCe Yt (69)
Uy UV W, Z¢ —Sp SaCp CaCh 2
0O 0 0 1 0 0 0 1

where s, = sina;, ¢, = cosay, etc.
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(x, y) tool frame
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Figure 4: Tool coordinate move in the X-Y plane

Now with these two matrices we can get the effect of the new tool move in terms of the
world coordinates by the product of the two:

Uxt Uxt Wxe Xy

Y,
T, =17, 0T, = Uyt Vyr Wyt Iy 70
! ! Uzt Vzi Wze Ly (70)

0 0 0 1

The matrix '7; contains all the information used as input to the inverse kinematics
calculation as described in section 1.3.

1.10 Kinematics component

The kinematics is provided in LinuxCNC by a specially written component in the C-
language. It has a standard procedure structure and is therefore normally copied from
some standard example from the library of components, and then modified.

The component is compiled and installed in the correct place in the file system by a
command such as:

sudo comp —--install kinsname.c

where “kinsname” is the name you give to your component. The sudo prefix is required
to install it and you will be asked for your root password.

Once it is compiled and installed you can reference it in your config setup of your robot.
This is done in the .hal file of your config directory. The standard command

loadrt trivkins

is replaced by
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loadrt robot6kins

where "robot6kins” is the name of our kins program. A further modification to the .hal
file is required (typically at the end of your initial template file), where we have to set
the DH parameters of the robot. In our 6-joint robot the entries could be:

# set robot DH parameters
setp robot6kins.DH-al 200
setp robot6kins.DH-a2 600
setp robot6kins.DH-a3 110
setp robot6kins.DH-d1 450
setp robot6kins.DH-d2 O
setp robot6kins.DH-d4 620
setp robot6kins.DH-d6 150

An example of a kinematics component, applicable to our 6-joint serial planer robot, is
given below. It has the following structure:

e A set of "include” declarations which is need to link in other procedures from

libraries

A struct definition to define the "hal” input links or pins. These are defined in your
.hal file.

Functions or procedures called from the subsequent procedures, if any.

The "kinematicsForward” procedure with its fixed parameter list (joints, pos, and
flags).

The "kinematicsInverse” procedure with its fixed parameter list (pos, joints, and
flags).

The “kinematicsType” procedure which defines that BOTH forward and inverse
kins are used. There are also other possibilities

The “rtapi_app_main” main program with its own include declarations and in which
the links to the HAL pins are defined.

/3K 3Kk ok sk ok ok K ok ok K 3 ok ok K ok ok 3k 3 ok ok K ok ok sk 3 ok ok K ok ok K ok ok sk sk ok sk K ok ok K ok ok sk K ok ok K 3 ok sk K ok ok 3k K ok ok K ok ok ok

* Description: robot6kins.c

*

Kinematics for 6 axis ABB,Fanuc,Kuka type robot.
This serial arm robot has the following DH parameters:
al,a2,a3, d1,d2,d4,d6

Author: Rudy du Preez (SA-CNC-CLUB)
License: GPL Version 2

* ¥ ¥ %X X ¥

********************************************************************/
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#include "kinematics.h"
#include "hal.h"
#include "rtapi.h"
#include "rtapi_math.h"

struct haldata {
hal_float_t *DH_al;
hal_float_t *DH_a2;
hal_float_t *DH_a3;
hal_float_t *DH_d1;
hal_float_t *DH_d2;
hal_float_t *DH_d4;
hal_float_t *DH_d6;
hal_bit_t *tmode;
hal_bit_t *soffs;

} *haldata;

double Ao = O;
double Bo = 0;
double Co =

o

double aw = O;
double bw = 0O
double cw = O;

double To[4][4];
double Tt[4][4];
double Twl[4][4];

int elbup = 1;
int wrflp = 0;
int wsing = 0;

double eps = 0.0001;

//
int fwABC2(double ux, double uy, double uz, double vx, double vy,
double vz, double wz)

{
// to Craig: p40 RPY(c,b,a) => (Rz,Ry,Rz)

bw = atan2(-uz, sqrt(ux*ux + uy*uy) );
if (fabs(fabs(bw) - M_PI/2.0) > eps) {
aw = atan2(vz, wz);
cw = atan2(uy, ux);
} else if (bw > 0.0) {
aw = atan2(vx, vy);
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bw = M_PI/2.0;
cw = 0;
} else {
aw = -atan2(vx, vy);
bw = -M_PI/2.0;
cw = 0;
}
if (aw < 0) {aw = aw + 2*M_PI;}
return O;
}
//

static void MatMult(double A[][4], double B[][4], double C[][4])

{
int i, j, k;

for (i=0; i<=3; ++i){
for (j=0; j<=3; ++j){
C[il [j] = 0;
for (k=0; k<=3; ++k){
Clil [j] = C[il[j] + A[i]l [x]=*B[k][j];
}
}
+
+

//
static void PoseMat(double X, double Y, double Z,
double A, double B, double C, double T[] [4])

{

double cr, sr, cp, sp, ¢y, SV;
sr = sin(A); cr = cos(A);
sp = sin(B); cp = cos(B);
sy = sin(C); cy = cos(C);

T[0] [0] = cp*cy;
T[11[0] = cp*sy;
T[2] [0] = -sp;
T[31[0] = 0;

T[0][1] = sr*sp*cy - crxsy;
T[1] [1] = sr*sp*sy + cr*cy;
T[2] [1] = sr*cp;

T[3][1] = 0;

T[0] [2] = cr*sp*cy + sr*sy;
T[1] [2] = cr*xsp*sy - sr*cy;
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T[2] [2]
T3] [2]

T[0] [3]

= Cr*cp;

0;

X
T[1]1[3] = Y;
T[2][3] = Z;
T[3]1[3] = 1;

+

//

int kinematicsForward(const double *joint,
EmcPose * pos,
const KINEMATICS_FORWARD_FLAGS * fflags,
KINEMATICS_INVERSE_FLAGS * iflags)

double
double
double
double
double
double
double

al
a2
a3
d1
d2
d4
dé

int tmode
int soffs

double
double
double
double
double
double

double
double
double
double
double

cl
c2
c3
c4d
cb
c6

thl
th2
th3
thd
thb
th6

cl,

*(haldata->DH_al);
*(haldata->DH_a2) ;
*(haldata->DH_a3);
* (haldata->DH_d1) ;
* (haldata->DH_d2) ;
*(haldata->DH_d4) ;
* (haldata->DH_d6) ;
* (haldata—->tmode) ;
* (haldata->soffs);

joint [0]*M_PI/180;
joint [1]1*M_PI/180;
joint [2]*M_PI/180;
joint [3]1*M_PI/180;
joint [4]*M_PI/180;
joint [6]*M_PI/180;

sl, c2, s2, c3, 83, c4, s4, c5, s5, c6, s6, c23, s23;

ub11, ub12, ub21, ub22, udi1l, ud412, udi13, ud21, ud22, ud23;
u311, u312, u313, u314, u321, u322, u323, u324;

u211, u212, u213, u214, u221, u222, u223, u224, vii4;

ux, uy, uz, vx, Vy, VZ, WX, Wy, WZ, gX, qy, 9Z;

cos(thl); s1
cos(th2); s2 = sin(th2);
cos(th3); 83 = sin(th3);
cos(thd4); s4 = sin(th4);
cos(thb); s5 = sin(thb);
cos(th6); s6

sin(thl);

sin(thé);

c23 = cos(th2+th3); 523 = sin(th2+th3);

ubll =
ub21 =

cb*c6; ubl2
sb*xc6; ub22

-c5*s6;
-s5%s6;
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udll = c4*xubll - s4xs6;
udl2 = c4*xubl2 - s4x*c6;
ud13 = c4xsh;
ud21 = s4xubll + c4*s6;
ud22 = s4*xubl12 + c4dxc6;
ud23 = s4dxsh;

u3ll = c3*xudll - s3*ub2i;
u312 = c3%udl12 - s3%ub22;
u313 = c3*ud13 + s3*cb;
u314 = s3xd4 + c3*a3;

u321 = s3*xud4l1l + c3*ub21;
u322 = s3*udl2 + c3*xub22;
u323 = s3*ud13 - c3x*cb;
u324 = -c3*xd4 + s3*a3;

u211 = c23*%udl1l1 - s23*%ub21;
u212 = c23xud12 - s23*ub22;
u213 = c23*xu413 + s23*ch;

u214 = s23xd4 + c23*%a3 + c2*a2;

u221 = s23*%udl1l1 + c23*ub21;

u222 = s23xud12 + c23*ub22;

u223 = s23*xu413 - c23%*ch;

u224 = -c23*%d4 + s23*xa3 + s2*a2;
v114 = -s23*%d4 + c23*%a3 + c2*a2;

ux = cl*xu211 + si1x*ud21;

uy = slxu2ll - clxu421;

uz = u221;

vx = cl*xu212 + s1*ud22;

vy = sl1*xu212 - cl%ud22;

vz = u222;

wx = cl*xu213 + s1xu423;

wy = sl1*xu213 - c1xu423;

wz = u223;

gx = cl*u214 + s1xd2 + cl*al + d6*wx;
qy = sl1*xu214 - clxd2 + sl*al + d6*wy;
gz = u224 + dl + d6*wz;

fwABC2(ux, uy, uz, vx, vy, vz, Wz);
if (v114 > 0) {elbup = 1;} else {elbup = 0;}

if (s5 >= 0) A{wrflp = 0;} else {wrflp = 1;}
if (fabs(sb) < eps) {wsing = 1;} else {wsing = 0;}
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if (soffs) {

//

To[0][0] = ux; To[0][1] = vx; Tol[0][2] = wx; To[0][3] = gx;
To[1] [0] = uy; Tol[1][1] = vy; Tol[1][2] = wy; To[1][3] = qy;
To[2] [0] = uz; To[2][1] = vz; Tol[2][2] = wz; To[2][3] = qz;
To[3][0] = 0; To[3][1] = 0; Tol[3][2] = 0; To[3][3] = 1;
Ao = aw; Bo = bw; Co = cw;

}

if (tmode) {
PoseMat (qx-To[0] [3], qy-To[1]1[3], qz-To[2][3],

aw-Ao, bw-Bo, cw-Co, Tt);

MatMult(To, Tt, Tw);
ux = Tw[0][0]; vx = Tw[0][1]; wx = Tw[0][2]; gx = Tw[0][3];
uy = Tw[11[0]; vy = Twl1l[1]; wy = Tw[11[2]; qy = Tw[1]1[3];
uz = Tw[2][0]; vz = Twl2][1]; wz = Tw[2][2]; qz = Tw[2][3];

fwABC2(ux, uy, uz, vx, Vy, vz, Wz);

pos->tran.x = gx;
pos->tran.y = qy;
pos->tran.z = qz;
pos—>a = aw/M_PIx*180;

pos—>b = bw/M_PI*180;
pos->c = cw/M_PI*180;
return O;

}

//

int kinematicsInverse(const EmcPose * pos,

double *joint,

const KINEMATICS_INVERSE_FLAGS * iflags,
KINEMATICS_FORWARD_FLAGS * fflags)

double al = *(haldata->DH_al);
double a2 = *(haldata->DH_a2);
double a3 = *(haldata->DH_a3);
double d1 = *(haldata->DH_d1);
double d2 = *(haldata->DH_d2);
double d4 = *(haldata—->DH_d4);
double d6 = *(haldata->DH_d6);
int tmode = *(haldata->tmode);
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double Xt
double Yt
double Zt
double At
double Bt
double Ct

pos—->tran.x;
pos—>tran.y;
pos—->tran.z;
pos—>a/180*M_PI;
pos—->b/180*M_PTI;
pos—>c/180*M_PI;

double thl, th2, th3, th4, thb, th6;
double ux, uy, uz, vx, vy, vz, WX, Wy, WZ,
double r, k1, k2, gx, qy, 9z;
double c1, sl1, c2, s2, c3, s3, c4, s4, cb,
double v114, vi124, v214, v224, v113, v313,
double v111, v131, v311, v331, v411, v431;
static double th4old = 0.0;

//

int n1 = 1; // shoulder on the right
int n2 = 1; // elbow up
int n4 = 1; // wrist not flipped

joint[6] = To[0][3]; joint[7] = To[1]1[3]; joint[8] = To[2][3];

if (tmode) {
// tool coordinates

bxX, Py, PzZ;

s5, c23, s23;
v323;

PoseMat (Xt-To[0] [3], Yt-To[1][3], Zt-To[2][3],

At-Ao, Bt-Bo, Ct-Co, Tt);
MatMult(To, Tt, Tw);
} else {
// world coordinates
PoseMat (Xt, Yt, Zt, At, Bt, Ct, Tw);

Tw[0] [0]; vx
Tw[1] [0]; vy
Tw[2] [0]; vz

Twl[0] [1]; wx
Twl1] [1]; wy
Twl2] [1]; wz

ux

uy
uz

/* wrist position --------------—-—-—m—m o

px = gx - db6xwx;

Py = qy - dé*wy;
pz = qz - d6*wz;

/* solve for thl -—-———--——————————mm

r = sqrt(px*px + py*py);
if (r < d2) {

Tw[0] [2]; gx = Tw[0][3];
Twl1][2]; qy = Twl[1][3];
Tw[2] [2]; qz = Tw[2][3];

/% ’ERROR: ————--—-- point not reachable’ */

return 1;
}
k1 = atan2(py, px);
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/%

/%

/%

/%

//

//

/*

k2 = asin(d2/r);

if (n1 == 1) { thl = k1 + k2;}
else { thl = k1 - k2 + M_PI;}
cl = cos(thl); s1 = sin(thl);

solve for th2 ---------------- - - - -
v114 = px*cl + py*sl - al;
v124 = pz - di;
r = sqrt(vild*xvild + v124x*v124);
k1 = (a2*a2 - d4*d4 - a3*a3 + v114xvi1d + v124xv124)/(2*a2x*r);
if (abs(k1) > 1) {
’ERROR: ————-——-- point not reachable’; */
return 2;
}
k2 = acos(kl);
if (elbup == 1) {n2 = 1;}
else {n2 = -1;}
th2 = atan2(v124, v114) + n2xk2;
c2 = cos(th2); s2 = sin(th2);

solve for th3 -------------—-———— */
v214 = c2xv11d + s2xv124 - a2;

v224 = -s2xv114 + c2xv124;

th3 = -atan2(a3, d4) + atan2(v214, -v224);

c3 = cos(th3); s3 = sin(th3);

solve for th4 - */
c23 = cos(th2+th3); s23 = sin(th2+th3);

v113 = cl*wx + sl*wy;
v313 = c23*v113 + s23*wz;
v323 = slxwx - cl*wy;

if ((fabs(v323) < eps) && (fabs(v313) < eps)){ th4 = 0;}
else {th4 = atan2(n4*v323, n4*xv313);}

take care of singularities and map for continuity
if ((fabs(v323) < eps) && (v313 < eps)) {th4 = thdold;}
if ((v323 > eps) && (v313 < eps)) {th4 = thd - 2xM_PI;}
if ((fabs(v113) < eps) && (fabs(v313) < eps) &&

(fabs(v323) < eps) ) {th4 = thdold;}

th4o0ld = th4;

c4 = cos(thd); s4 = sin(thd);

solve for thp --------------------------------bboo---0'-o0'"+0
k1 = c4%xv313 + s4%v323;

k2 = s23%v113 - c23*wz;

thb = atan2(kl, k2);
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//
c5 = cos(thb); s5 = sin(thb);
/* solve for th6 --———---""""""""""-——————————————————— */
v11ll = cl*ux + sl*uy;
v131 = sl*ux - cl*uy;
v311l = c23*%v111l + s23*uz;
v331 = s23*v111l - c23*uz;
v411l = c4*v311 + s4*v131;
v431 = -s4*v311 + cdxv131;
//
k1l = v431;
k2 = cbxv411l - sb*xv331;
th6 = atan2(kl, k2);
//
/* convert to degrees —————————————— - —————— oo */
joint[0] = th1%180/PM_PI;
joint[1] = th2%x180/PM_PI;
joint[2] = th3%180/PM_PI;
joint[3] = th4%180/PM_PI;
joint[4] = th5%180/PM_PI;
joint[6] = th6x180/PM_PI;
return O;
}
//
KINEMATICS_TYPE kinematicsType()
{
return KINEMATICS_BOTH;
}

#include "rtapi.h" /* RTAPI realtime 0S API x/
#include "rtapi_app.h" /* RTAPI realtime module decls */

#include

"hal.h"

EXPORT_SYMBOL (kinematicsType) ;
EXPORT_SYMBOL (kinematicsInverse) ;
EXPORT_SYMBOL (kinematicsForward) ;
MODULE_LICENSE("GPL") ;

int comp_id;
int rtapi_app_main(void) {

int res
comp_id
if (comp_

0;
hal_init("robot6kins");

id < 0) return comp_id;
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haldata = hal_malloc(sizeof (struct haldata));

if ((res = hal_pin_float_new("robot6kins.DH-al", HAL_IO,
&(haldata->DH_al), comp_id)) < 0) goto error;
if((res = hal_pin_float_new("robot6kins.DH-a2", HAL_IO,
&(haldata->DH_a2), comp_id)) < 0) goto error;
if ((res = hal_pin_float_new("robot6kins.DH-a3", HAL_IN,
&(haldata->DH_a3), comp_id)) < 0) goto error;
if ((res = hal_pin_float_new("robot6kins.DH-d1", HAL_IO,
&(haldata->DH_d1), comp_id)) < 0) goto error;
if ((res = hal_pin_float_new("robot6kins.DH-d2", HAL_IO,
&(haldata->DH_d2), comp_id)) < 0) goto error;
if ((res = hal_pin_float_new("robot6kins.DH-d4", HAL_IN,
&(haldata->DH_d4), comp_id)) < 0) goto error;
if((res = hal_pin_float_new("robot6kins.DH-d6", HAL_IN,
&(haldata->DH_d6), comp_id)) < 0) goto error;
if ((res = hal_pin_bit_new("robot6kins.soffs", HAL_IN,
&(haldata->soffs), comp_id)) < 0) goto error;
if ((res = hal_pin_bit_new("robot6kins.tmode", HAL_IN,
&(haldata->tmode), comp_id)) < 0) goto error;
hal_ready(comp_id);
return O;

error:
hal_exit(comp_id);
return res,;

void rtapi_app_exit(void) { hal_exit(comp_id); }

Note that two extra HAL pins have been added: robot3kins.tmode and robot3kins.soffs.
The "tmode” pin should be connected to a VCP button (toggle) that can be used to
change between "tool” and "world” coordinates. The ”soffs” pin is connected to a VCP
button to trigger an “offset” of coordinates.

To work in "tool” coordinates with this component the following steps is normally re-
quired (using the AXIS gui with an attached VCP):

1. Move in "world” mode to a offset pose X,.,Y,, Z,, A,, B,, C,.

Do a "touch off” for all 6 axes X, Y, Z, A, B, C' that are non-zero.
Activate the “set offset” button.

Toggle the "tool” mode button to change into tool mode.

Perform operations (jogging or Gecode) in tool coordinates until finished.

o o o w D

Move to zero tool pose.
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7. Toggle "tool” mode button to go back to "world” mode.

Warning: the kinematics script given above is still experimental. Although much has
been done to avoid this, sudden moves of the wrist joint (joint 3) by 180 degrees may
still occur in certain (rare) situations.

1.11 VISMACH simulation model

VISMACH is a tool to show a 3D simulation of a physical machine in operation.

Vismach.py is a python library to draw objects in a simulation window. It is located in
/usr/lib/pymodules/python2.6. The simulation program itself is a script based on vis-
mach.py. The scripts are located in /usr/bin. The .hal file of your machine in your
/home/user/linuxcnc/config/yourmachine loads this script with "loadusr” as a HAL com-
ponent and connects the joints. The following items are described in the script:

e geometry is defined or loaded from a .stl or .obj file
e placement of geometry (translation and or rotation)
e joints are defined and connected to HAL PINs

e colour is defined
Some of the geometric solids that can be directly defined are:

part = CylinderX(x1,r1,x2,r2) : a cylinder along X-axis from x1 to x2 with radiuses r1
and r2.

part = CylinderY(y1,r1,y2,r2) : a cylinder along Y-axis from y1 to y2 with radiuses r1
and r2.

part = CylinderZ(z1,r1,22,r2) : a cylinder along Z-axis from z1 to z2 with radiuses r1
and r2.

part = Box(x1,y1,z1, x2,y2,22) : arectangular box between opposite corners x1,y1,z1
to x2,y2,z2.

Parts can be imported as STL files:

part = AsciiSTL( filename”) : the part modelled as an STL file is loaded; example:
spindle = AsciiSTL("spindle.stl”).

Some transformations can also be done:
part = Translate(parts,Xx,y,z) : translate parts to x,y,z.

part = Rotate(parts.,th,x,y,z) : Rotate parts th degrees around axis defined by x,y,z.

part = HalTranslate(parts,comp,var,x,y,z) : Translate parts along x,y,z vector. Dis-
tance is defined by a Hal pin "var” of component "comp”.
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part = HalRotate(parts,comp,var,th,x,y,z) : Rotate parts by th degrees around axis
defined by x,y,z. Th is scaled by a Hal pin "var” of component "comp”.

Parts can be grouped together to form subassemblies:
part = Collection(parts) : the listed parts are collected to move together.

The tool position is "captured” and the parts or collections can be given colours as
follows:

part = Capture() : the position (tool or work) is captured.

part = Color(red,green,blue,alpha,parts) : RGB color code is used plus trans-
parency or blending - all values between 0 and 1.

The last entry in the script is the "main” entry:
main(model, tool, work, size) : define parts and window size.

If "parts” is a list then it must be included in square brackets, ie. [table,handle,screw].

For our 6-joint serial robot the following is an example of a VISMACH script. The link
lengths a1=200, a2=600, a3=110, d1=450, d2=0, d4=620, and d6=150 mm. The actual
robot modelled is the Yaskawa MOTOMAN YFRL NNA 10GB.

#!/usr/bin/python

# This program generates a VISMACH model of a 6-joint serial robot.
# Two extra "hal" pins are used "lnkdx, 1lnkdz", which are linked to a
# component "croffsets.comp". They are the offsets of the bar link at
# the back of the robot. It should be possible to include this

# component into the VISMACH script - so far not achieved!
#
#
#

Author: Rudy du Preez (SA-CNC-CLUB)
License: GPL Version 2

# __________________________________________________________________
from vismach import *

import hal

¢ = hal.component("motomangui")
c.newpin("jointl", hal.HAL_FLOAT, hal.HAL_IN)
c.newpin("joint2", hal.HAL_FLOAT, hal.HAL_IN)
c.newpin("joint3", hal.HAL_FLOAT, hal.HAL_IN)
c.newpin("joint4", hal.HAL_FLOAT, hal.HAL_IN)
c.newpin("joint5", hal.HAL_FLOAT, hal.HAL_IN)
c.newpin("joint6", hal.HAL_FLOAT, hal.HAL_IN)
c.newpin("lnkdx", hal.HAL_FLOAT, hal.HAL_IN)
c.newpin("lnkdz", hal.HAL_FLOAT, hal.HAL_IN)
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c.newpin("grip", hal.HAL_FLOAT, hal.HAL_IN)
c.ready()

# finger

fingerl = CylinderZ(-70, 10, 0, 0.2)

#finger2 = Cylinderz(20, 10, 90, 7)

fingerl = HalRotate([fingerl],c,"grip", 40,0,1,0)

#finger2 = HalRotate([finger2],c,"grip",-40,0,1,0)
#fingerl = Translate([fingerl], 20,0.0,0.1)
#finger2 = Translate([finger2],-20,0.0,0.1)

# axes

xaxis = Color([1,0,0,1],[CylinderX(0,3,70,3)])

yaxis = Color([0,1,0,1],[CylinderY(0,3,70,3)])
zaxis = Color([0,0,1,1],[CylinderZ(0,3,70,3)])
fingerl = Collection([fingerl,xaxis,yaxis,zaxis])
tooltip = Capture()

1ink7 = AsciiSTL(filename="1ink7.stl")

1ink7 = Collection([tooltip])

1link7 = Color([0.9,0.1,0.0,1],[1ink7])
# assemble fingers, and make it rotate
1ink7 = HalRotate([fingerl,1ink7],c,"joint6",1,0,0,1)

# link 6
1ink6 = AsciiSTL(filename="1ink6.stl")
# rotate and translate it so that the joint 6 is in origin

1link6 = Color([0.5,1,0.5,1], [1ink6])
1link6 = Rotate([1link6],90,0,1,0)
1link6 = Translate([link6],0,0,-150)

# mount 1ink7 on it

1link6 = Collection([1link7, 1ink6])

#translate it back so joint 5 rotation in origin
link6 = Translate([1ink6],0,0,150)

xaxish = Color([1,0,0,1], [CylinderX(0,5,100,5)1)
yaxis5 = Color([0,0,1,1], [CylinderY(0,5,120,5)])
1ink6 = Collection([1ink6, xaxisb5, yaxisb5])

#apply HAL DOF

1link6 = HalRotate([link6],c,"joint5",1,0,1,0) # wrist

# link 5, wrist

link5 = AsciiSTL(filename="1ink5.stl")

link5 = Color([0.5,0.5,0.5,1],[1ink5])
#translate it so joint 5 rotation in origin
link5 = Tramnslate([1link5],0,0,-400)

xaxis4 = Color([1,0,0,1], [CylinderX(0,3,120,3)])
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yaxis4 = Color([0,1,0,1], [CylinderY(0,3,150,3)])

marker = CylinderZ(-60,15,60,15)

marker = Translate([marker],b56,0,-150)

# assemble

1ink5 = Collection([1ink6, 1ink5, xaxis4, yaxis4, marker])
# translate back to joint4 in origin

1link5 = Translate([1link5],0,0,490)

#apply HAL DOF

1link5 = HalRotate([link5],c,"joint4",1,0,0,1) # arm twist

# link4, arm, origin is in the joint3 location

link4 = AsciiSTL(filename="1link4.stl")
link4 = Color([0,0.5,1,1],[1ink4])
link4 = Translate([1link4],0,0,90)
link4 = Collection([link5, 1link4])

# move back to joint3 in origin

link4 = Translate([link4],110,0,130)

link4 = Rotate([link4],-90,0,1,0)

link4 = HalRotate([link4],c,"joint3",1,0,1,0) # elbow
#crank

crank = AsciiSTL(filename="crank.stl")

crank = Color([0,0.5,1,1], [crank])

crank = HalRotate([crank],c,"joint3",1,0,1,0)
crank = Translate([crank],0,25,-600)

#link

link = AsciiSTL(filename="1link4a.stl")

link = Rotate([link],-90,0,1,0)

link = Translate([link],200,0,-600)

link = HalTranslate([link],c,"lnkdx",-1,0,0)
link = HalTranslate([link],c,"lnkdz",0,0,-1)

crank = Collection([crank, link])

# link 3, upper arm

1link3 = AsciiSTL(filename="1ink3.stl")
1ink3 = Color([0,0,1,1],[1ink3])

1link3 = Translate([1ink3],0,15,-600)
#assemble

1link3 = Collection([link4, 1ink3, crank])
1ink3 = Rotate([1ink3],-90,0,1,0)

#move back to j2 in Origin

1ink3 = Translate([1ink3],-600,0,0)

#and rotate according to kinematics

1ink3 = HalRotate([link3],c,"joint2",1,0,1,0) # shoulder

# link 2 vertical axis
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link2 = AsciiSTL(filename="1ink2.stl")

link2 = Color([1,0.19,1,1],[1ink2])

link2 = Rotate([link2], 180,0,0,1)

link2 = Tramslate([1link2], 200,0,-450)

link2 = Collection([1ink3, 1ink2])

1link2 = Translate([link2],-200,0,450)

#

1ink2 = HalRotate([link2],c,"joint1",1,0,0,1) # vert axis

#move 1link2 up
1link2 = Translate([link2], 0,0, 140)

linkl = AsciiSTL(filename="1link1l.stl");
linkl = Color([1,0.19,0.2,1],[1ink1])
linkl = Rotate([link1], 180,0,0,1)

xaxisO = Color([1,0,0,1], [CylinderX(0,5,-300,5)])
yaxisO = Color([0,1,0,1], [CylinderY(0,5,-300,5)1)
# add a floor

floor = Box(-1.5,-1.5,-0.02,1.5,1.5,0.0)

floor = Collection([floor, xaxis0O, yaxisO])

work = Capture()

model = Collection([linkl, 1link2, floor, work])

main(model, tooltip, work, 1000)

The component “croffsets” is included below:

component croffsets "motoman link motion";
pin in float angle;

pin in float crlen;

pin out float 1dx;

pin out float 1ldz;

function _;

license "GPL";

#include <rtapi_math.h>

FUNCTION(_) {
1ldx = crlen*(1 - cos(angle/180%3.14159));
1ldz = crlen*sin(angle/180%3.14159);
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Figure 5: Gcode example 1

1.12 GCODE examples

Two basic examples of Gcode are listed below. They could be loaded and executed
after the robot arm has been position at the origin of the tool coordinate system some-
where on the work surface, which can have can have orientation angles Ao, Bo and Co
relative to the "world” axes X,Y,Z.

The first one does some "drilling” in spce at the four corners of a square and cuts a
ciscle in the "tool” x-y plane.

( robot3 test 1- "drilling and cutting")
G21 G90 G64 G40 G17
GO Z10

M3 S1000

GO X-200 Y-200

G1 F1000.0 Z60

GO Z10

GO X200 Y-200

G1 Z60

GO Z10

GO X200 Y200

G1 Z60

GO Z10

GO X-200 Y200

G1 Z60

GO Z10

GO X-200 YO
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G1
G3
GO
GO
M5
M2

Z20 F100

I200 JO F2000
Z0

X0 YO

Figure 6: Gcode example 2

The second simulates a "welding” process along the square with the welding torch at
an angle to the "tool” x-y plane.

( robot3 test 2 - "welding")
G21 G90 G64 G40 G17

GO
GO
GO
G1
GO
G1
GO
G1
GO
G1
GO
GO
GO
M5
M2

220

X-200 Y-200
A20 ZO

X200 Y-200 F1000
A0 B20

X200 Y200
A-20 BO
X-200 Y200
AO B-20
X-200 Y-200
AO BO Z20
X0 YO

Z0
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