

SPIBUS HAL Driver for LinuxCNC

● SPI (Serial Peripheral Interface) is a serial protocol for talking with memory,
sensors, and other digital devices. It is Synchronous, meaning it has a separate
clock line that tells the slaves on the network when data is valid and when they may
write to the bus. It requires four lines: Clock, Master Out Slave In (MOSI), Master In
Slave Out (MISO), and CS (Chip Select).

● This particular implementation was written out of a desire to talk with the ST
Microelectronics L6480 stepper motor controller. Another module called
L6480STEPPER is being written as a compliment to this generic SPI driver.

● The SPIBUS driver can map its pins to ANY available HAL pin through nets.

TOSPIBUFF

TOSPIBUFFSP

FROMSPIBUFF

FROMSPIBUFFSP

SPIBUS

TOSPIBUFFSP

FROMSPIBUFF

FROMSPIBUFFSP

L6480 DRIVER

BUFFLOCKBUFFLOCK

BUFFLOCK – PIN will be used to let the SPIBUS component know that it is being
written to and that it cannot change the state of the buffers NOR the position of the
stack pointers. The SPIBUS component will work off of a private copy of the buffers
keeping track of how much data it has sent or received since the buffer was locked.
After the lock is removed, it will update the buffers based on what transcribed since
the lock was put in place. This is to prevent a race condition when SPIBUS is in the
base thread and preempts the software talking to it. Before writing to the buffers or
reading from them, BUFFLOCK should be and the other component should not
change ANYTHING until the component is called again. Then it can modify the
buffers, snapshot the FROMSPIBUFF/reste FROMSPIBUFFSP etc. After the
modifications, BUFFLOCK can be set back to zero again releasing control of the
buffers back to the SPIBUS component.

MOSI (OUT)

MISO (IN)

CLOCK (OUT)

CHIPSELECT (OUT)

OUT PIN

IN PIN

OUT PIN

OUT PIN

TOSPI Connections

● TOSPIBUFF – An array of unsigned [32]. Only 8 bits of
the unsigned are used. Holds the bytes that will be
sent to the SPI bus. The data in the buffer will be
shifted down automatically as the SPIBUS component
sends the data out. [0] is the oldest data, [31] will
contain the newest.

● TOSPIBUFFSP – unsigned bi-directional – Contains
how many bytes of data are in the buffer. When 0, the
buffer is empty. When at 31, it is full.

FROMSPI Connections

● FROMSPIBUFF – An array of unsigned [32]. Only 8 bits of each unsigned are used.
Holds the bytes that came from the SPI bus. The consumer of the data in the buffer is
responsible for shifting the data in the buffer. The SPIBUS component puts the newest
data at the highest slot in the buffer. [0] is the oldest data, [31] will contain the newest.

● FROMSPIBUFFSP – unsigned bi-directional – Contains how many bytes of data are in
the buffer. When 0, the buffer is empty. When at 31, it is full. It is the responsibility of
the consumer of the data to update this stack pointer.

● Important: before trying to read the data in the FROM buffers, use BUFFLOCK to freeze
it. Wait a cycle. Read BUFFLOCK to make sure it is locked. Then modify the buffers to
show you have read them and clear BUFFLOCK.

MOSI (OUT)

MISO (IN)

CLOCK (OUT)

CHIPSELECT (OUT)

OUT PIN

IN PIN

OUT PIN

OUT PIN

Those familiar with the SPI bus protocol will recognize the pin names.

Master out, slave in (MOSI) is used for the SPI driver to send data to some physical
pins. It should be connected to an output pin. It will be connected to the data input on
the slave devices.

Master In Slave out (MISO) is used to read responses from the slaves. It must be an
input pin. It will be connected to the slave data output.

CLOCK – This is connected to an output pin on your LinuxCNC box and will be
connected to a clock input on your SPI bus parts.

CHIPSELECT – This line (usually active LOW) goes to a low or zero state to signal the
chip connected to it that it is being talked to. This allows multiple chips to talk on the
same SPI bus with only a single additional line for each. Four wires for one chip, Five
for two, etc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

