
Introduction
This document describes how to add a new Mesa card to the pncconf utility.

Concepts
There are various types of Mesa cards that this configuration utility supports. Generally speaking, they
need to be run with a specific firmware that configures the FPGA on the card to behave in a certain way
with respect to the I/O of the card. In some cases this firmware is installed at runtime by LinuxCNC
and in other cases it is loaded on the boards manually via some other process. In order for pncconf to
be able to properly generate a configuration, it must know both the Mesa I/O card(s) you are
configuring, as well as the firmware installed on those cards. In the case of the real time drivers (for
example the hm2_pci driver), the pinout from message will be written to the dmesg facility on

LinuxCNC startup. In the case of the upsace drivers (for example the hm2_eth driver), the pinouts are

written to the stdout of the LinuxCNC process and so you can see the pinout by starting LinuxCNC

from a command prompt.

Individual firmware images allow additional configuration, via the driver, to specify for instance the
specific number of stepgens, pwmgens and encoders your specific machine requires. The remaining I/O
is typically configured as GPIO. For example, a 7i93 card, can be configiured with an SVST4_4d

firmware, which allows up to 4 steppers, 4 encoders, and 4 pwmgens. Using pncconf you can configure
fewer of each of those, and the remainder will be configured as GPIO. Because things like stepgens,
pwmgens, and encoders are allocated in the firmware in a particular order, typically you have to align
the wiring of the machine to respect these limitations. This is a limitation of how the Mesa firmware is
handled, not pncconf.

To add a board to pncconf, you must create a list data structure within the private_data.py

MESA_INTERNAL_FIRMWAREDATA list variable that specifies the details of the card. There will be

an entry in that data structure for each combination of card and firmware that you wish to have as
configuration options.

Examples
An example of a data structure to configure the 7i93 card with a firmware capable of up to 4
pwmgens/encoders and 4 stepgens is shown below. The 7i93 has two 50-pin headers, which creates

48 total I/O pins, 24 pairs of signal and ground plus VCC and ground on each 50 pin header. This
configuration is compatible with the SVST4_4d or SVST4_8d firmware available for the 7i93 card.

The expected data elements of the list are described programmatically in the private_data.py

file. However, we will dissect this example a bit to provide some more context.

position in
list

description notes

0 board title
1 board name

2
firmware name for this
configuration

3 firmware directory used when the firmware is installed at runtime
4 hal driver name
5 max encoders

6
number of pins per
encoder

7 max resolver gens

8
number of pins per
resolver gen

9
max number of
pwmgens

10
number of pins per
pwm gen

11
max number of
tppwmgens

12
number of pins per
tppwmgen

13
max number of step
gens

14
number of pins per step
gen

15 max smart serial
16 number of channels

17
discovered sserial
devices

A list

18 through
24

spare

25 has watchdog 1 or 0
26 max GPIO
27 low frequency rate
28 hi frequency rate

29
available connector
numbers

A list of component type and logical number in the order they
should appear. This should match the physical labels on the Mesa
card.

The remainder of the data structure consists of list entries specifying the individual I/O pins of the card
in order of how they will be allocated by the firmware. For instance the first six pins are used to
provision two encoders with a,b and index connections: [S.ENCB,1],[S.ENCA,1],

[S.ENCB,0],[S.ENCA,0],[S.ENCI,1],[S.ENCI,0]. The next two pins are two pwmgens:

[S.PWMP,1],[S.PWMP,0]. The order of these pins is not arbitrary, and must match what the

specific firmware on the card is expecting. This information is supplied from Mesa in the form of pin
files, typically shipped with the firmware files. In our case there are 48 entries because there are 48 I/O
pins.

Allocation of the order of I/O pins to connectors is done at the Mesa hardware level and in our case the
Mesa manual for the 7i93 specifies CONECTOR P2 I/O 0..23 and CONNECTOR P1 I/O

24..47.

If logical number < 100 => GPIO can be changed to GPIOO or GPIOD at the start of linuxcnc, load
time if you prefer (or run time) If logical number > 100 => GPIO can NOT be changed to GPIOO or
GPIOD at the start of linuxcnc, load time (always input or always output) Value of number or number-
100 corresponds with HAL Pin of Hostmot2 component The number 0 or 100 currently only has
meaning for GPIO, SSR, INM and OUTM components. With GPIO the numbering uses the position in
the firmware, starting with the first found GPIO as 0. SSR encodes the logical number within the 1xx
number. ie 100 = zero component, 101 the #1 component etc.

The data structure from the code is replicated below. Using the data above, you should be able to
decode this information:

["7i93-Internal Data", "7i93", "SVST4_4d", "7i93", "hm2_eth",
 4,3, 0,0, 4,3, 0,0, 4,2, 0,0, [],0,0,0,0,0,0,0, 1, 48, 33, 100, [2,1],
 # TAB 2
 [S.ENCB,1],[S.ENCA,1],[S.ENCB,0],[S.ENCA,0],[S.ENCI,1],[S.ENCI,0],[S.PWMP,1],
[S.PWMP,0],[S.PWMD,1],[S.PWMD,0],[S.PWME,1],[S.PWME,0],
 [S.ENCB,3],[S.ENCA,3],[S.ENCB,2],[S.ENCA,2],[S.ENCI,3],[S.ENCI,2],[S.PWMP,3],
[S.PWMP,2],[S.PWMD,3],[S.PWMD,2],[S.PWME,3],[S.PWME,2],
 # TAB 1
 [S.STEPA,0],[S.STEPB,0],[S.GPIOI,0],[S.GPIOI,0],[S.GPIOI,0],[S.GPIOI,0],
[S.STEPA,1],[S.STEPB,1],[S.GPIOI,0],[S.GPIOI,0],[S.GPIOI,0],[S.GPIOI,0],
 [S.STEPA,2],[S.STEPB,2],[S.GPIOI,0],[S.GPIOI,0],[S.GPIOI,0],[S.GPIOI,0],
[S.STEPA,3],[S.STEPB,3],[S.GPIOI,0],[S.GPIOI,0],[S.GPIOI,0],[S.GPIOI,0],]

Knowing this, you can use a similar approach to add the specific card you want, or a new firmware
configuration for an existing card, into pncconf.

Additional steps
You must also add the card to the MESA_BOARD_META dictionary data structure in the

private_data.py file. For our example this entry is:

 '7i93':{'DRIVER':'hm2_eth','PINS_PER_CONNECTOR':24,'TOTAL_CONNECTORS':2},

Caveats
This approach will work for cards that conform to existing configuration patterns. If a card comes out
that has new capabilities, that will of necessity require additional modification of pncconf.

	Introduction
	Concepts
	Examples
	Additional steps
	Caveats

