
What you’ve got in this sample
Two complete configs that only differ in how the carousel is sensed:

●​ vmc_index_metric.ini → uses toolchange_index.hal (index + pulse sensing)​

●​ vmc_graycode_metric.ini → uses toolchange_gray.hal (4-bit Gray code)​

Both run a Vismach simulated VMC with a carousel ATC and hook into Probe Basic’s ATC UI
(the “DynATC” widget).

The INI: where the big picture lives
Open e.g. vmc_index_metric.ini. The key sections:

[DISPLAY]

●​ DISPLAY = probe_basic​

●​ CONFIG_FILE = custom_config.yml (Probe Basic options)​

●​ ATC_TAB_DISPLAY = 1 → show the carousel ATC tab​

●​ USER_ATC_BUTTONS_PATH = user_atc_buttons/ (optional custom ATC buttons)​

[RS274NGC] (remaps + macros)

●​ SUBROUTINE_PATH = macros_sim​

M6 is remapped to a G-code program with prolog/epilog:​
​
 REMAP=M6 modalgroup=6 prolog=change_prolog ngc=toolchange epilog=change_epilog

●​

Helper remaps used by the UI and M6 logic:​
​
 M10 P... (move carousel best direction to P)
M11 / M12 (step CW / CCW)
M13 (home/reference carousel)
M21 / M22 (ATC out/unload / ATC in after load)
M24 (unclamp drawbar)
M25 (extend ATC to tool-change position)

●​ (They’re all in macros_sim/)​

[ATC] (parameters that drive the macros & UI)

●​ POCKETS = 12 (carousel size shown in the UI and used by macros)​

●​ Z_TOOL_CHANGE_HEIGHT (machine Z for clamp/unclamp)​

●​ Z_TOOL_CLEARANCE_HEIGHT (safe machine Z for rotating the platter)​

●​ STEP_TIME (purely UI animation pacing)​

[HAL]

For the index variant you’ll see:

HALFILE = vmc.hal # motion, joints, basic sim plumbing
HALFILE = sim_vmc_metric.hal # Vismach+sim sensors/actuators
HALFILE = spindle.hal # orient/pid demo
HALFILE = toolchange_index.hal # carousel component & ATC wiring (index/pulse)
HALFILE = sim_cannon.hal # unrelated PWM demo
POSTGUI_HALFILE = probe_basic_postgui.hal # UI timer & spindle rpm hook

The HAL: what’s wired to what

1) The carousel component

In index mode (toolchange_index.hal):

loadrt carousel pockets=12 dir=2 encoding=index
addf carousel.0 servo-thread

analog → integer pocket request
addf conv-float-s32.2 servo-thread
net car-pos-req motion.analog-out-02 => conv-float-s32.2.in
net car-pos-s32 conv-float-s32.2.out => carousel.0.pocket-number

In gray code mode (toolchange_gray.hal):

loadrt carousel pockets=12 dir=2 encoding=gray num_sense=4
addf carousel.0 servo-thread

Why the converter? G-code “motion.analog-out-NN” pins are floats;
carousel.0.pocket-number is an s32. The config uses conv-float-s32 to bridge them.

2) Motor drive & sensors (index mode mapping)

From toolchange_index.hal:

Outputs (to your actuators)

●​ motion.digital-out-03 → car-ccw​

●​ motion.digital-out-04 → car-cw​

●​ motion.digital-out-00 → arm-act (ATC extend/retract valve)​

●​ motion.digital-out-02 → tool-release (drawbar solenoid)​

Inputs (from your sensors)

●​ motion.digital-in-03 → index (carousel home index)​

●​ motion.digital-in-04 → pulse (slot pulse)​

●​ motion.digital-in-01 → arm-in​

●​ motion.digital-in-00 → arm-out​

●​ motion.digital-in-02 → tool-released​

●​ motion.digital-in-05 → tool-locked​

Carousel handshakes

●​ carousel.0.enable ↔ car-enable (you can gate it)​

●​ carousel.0.ready ↔ car-ready (status to UI/logic)​

Toolchange handshakes with LinuxCNC

net tool-prep-loop iocontrol.0.tool-prepare iocontrol.0.tool-prepared
net tool-change-loop iocontrol.0.tool-change iocontrol.0.tool-changed

ℹ️ The gray-code HAL wires 4 digital inputs to carousel.0.sense-0..3 instead
of index/pulse.

3) The sim “plant”

sim_vmc_metric.hal is a big Vismach simulation that creates virtual limit switches, ATC arm
motion, a simulated carousel, gray-code generator, etc. In a real machine you’ll remove/ignore
those simulated nets, and wire your real I/O instead.

The G-code macros (how M6 actually
works)
The heavy lifter is macros_sim/toolchange.ngc, called by the M6 remap. Key ideas:

●​ State variables (persisted across sessions unless volatile noted)​

1.​ #3989 — carousel homed flag (set by M13) (volatile)​

2.​ #3990 — current pocket number (1..N)​

3.​ #3991 — tool number currently in spindle (0 = none)​

4.​ #4001..#4024 — pocket→tool map (pocket i holds tool in #[4000+i])​

●​ INI-driven limits​

1.​ #<number_of_pockets> ← [ATC]POCKETS​

2.​ #<atc_z_tool_change_height>, #<atc_z_tool_clearance_height>
← [ATC]...​

●​ Flow (simplified):​

1.​ Check: valid task, homed, cutter comp off, etc. (change_prolog in
python/stdglue.py injects #<selected_tool>, #<current_pocket>,
etc.)​

2.​ Find the pocket that holds the requested tool (#<next_pocket>); also find first
empty pocket to park a tool if spindle is non-empty.​

3.​ If a tool is in the spindle, run M21 (ATC OUT + unload) or error if no empty
pocket.​

4.​ Rotate the carousel to #<next_pocket> using M10 (best direction).​

5.​ Extend ATC to cut position (M25/M21 path), orient spindle (via M19 in
orientspindle.ngc), unclamp/clamp with
M24/clamptool.ngc/unclamptool.ngc, verify sensors with M66 timeouts.​

6.​ Retract ATC home with M22, update #3990/#3991/#400x.​

7.​ Commit the change: M61 Q... and apply G43 H....​

●​ UI hooks: the macros sprinkle lines like​
 (DEBUG, EVAL[vcp.getWidget{"dynatc"}.store_tool{pocket, tool}])​
 to keep the Probe Basic ATC page in sync.​

Note on M64/M65/M66 “P” numbers: these are indices into motion’s digital
out/in pins. The sample sim HAL maps them to nets (see mapping above). On real
hardware you’ll map those nets to your I/O. If you change the mapping, keep the
“P” numbers and HAL nets in step.

Running the sim (quick sanity test)
1.​ Start LinuxCNC with vmc_index_metric.ini (or gray-code variant).​

2.​ Home the axes.​

3.​ In MDI:​

○​ M13 → reference the carousel.​

○​ M11 / M12 → nudge CW/CCW by one pocket.​

○​ T3 M6 → full toolchange to tool 3 (make sure the tool table has T3).​

4.​ Watch the ATC tab (DynATC) update pockets and spindle tool.​

Diagnostics during testing:

halcmd show pin carousel.0
halcmd show pin motion

Adapting this sample to a real machine
(incl. EtherCAT)

1.​ Pick your sensing style​

○​ Index + pulse: single “home index” plus one pulse per pocket.​

■​ Use toolchange_index.hal, encoding=index, wire:​

■​ carousel.0.sense-0 ⇐ index/home sensor​

■​ carousel.0.sense-1 ⇐ pocket pulse sensor​

○​ Gray code (absolute): 4 inputs give pocket number directly.​

■​ Use toolchange_gray.hal, encoding=gray num_sense=4, wire:​

■​ carousel.0.sense-0..3 ⇐ gray bits (0..3)​

2.​ Map the nets in toolchange_*.hal to your I/O​

○​ Keep the motion.digital-out and motion.digital-in names used by the macros
(so M64/M66 P numbers keep working).​

○​ Then connect those nets to your hardware pins.​

Example skeleton with EtherCAT (names will vary — check with halcmd show pin
lcec):​
​
 loadusr -W lcec_conf ethercat.xml
loadrt lcec

Outputs
net car-cw => lcec.0.2.dout-0
net car-ccw => lcec.0.2.dout-1
net arm-act => lcec.0.3.dout-0
net tool-release => lcec.0.3.dout-1

Inputs
net index <= lcec.0.4.din-0
net pulse <= lcec.0.4.din-1 # index mode only
net arm-in <= lcec.0.4.din-2
net arm-out <= lcec.0.4.din-3
net tool-released <= lcec.0.4.din-4
net tool-locked <= lcec.0.4.din-5

Keep the conv-float-s32 bridge for pocket requests
net car-pos-req motion.analog-out-02 => conv-float-s32.2.in
net car-pos-s32 conv-float-s32.2.out => carousel.0.pocket-number

3.​ EtherCAT pin names depend on your XML/slaves. The pattern is what matters: connect
the existing nets to your hardware pins.​
​

4.​ Set mechanical parameters​

○​ [ATC]POCKETS​

○​ [ATC]Z_TOOL_CHANGE_HEIGHT (machine Z to clamp/unclamp a tool)​

○​ [ATC]Z_TOOL_CLEARANCE_HEIGHT (safe rotate height)​

○​ If your drawbar/ATC logic differs, adjust the macros in macros_sim/ (they’re just
G-code).​

5.​ Spindle orientation (if you need it)​

○​ The sample spindle.hal demonstrates M19 orientation with a PID + orient
component. For a real encoder/drive, wire your actual encoder velocity/position,
and the orient lock output.​

6.​ Handshake stays the same​

○​ Keep iocontrol.0.tool-prepare/tool-prepared and
tool-change/tool-changed nets; the remap epilog commits the toolchange
via emccanon calls.​

Quick “cheat sheet” of signals used by the
macros

●​ Outputs (set/clear with M64/M65 Pn)​

○​ P0 — ATC extend (carousel OUT) valve (energize = out, de-energize = in)​

○​ P1 — used in macros for “ATC OUT position check” (see note below)​

○​ P2 — drawbar unclamp solenoid​

○​ P3/P4 — carousel step (CW/CCW) in M11/M12/M13 flows​

●​ Inputs (wait with M66 Pn L... Q...)​

○​ P0 — “ATC IN” position sensor​

○​ P1 — “ATC OUT” position sensor​

○​ P2 — tool released sensor (unclamped)​

○​ P5 — tool locked sensor (clamped)​

○​ P4 — index/pulse (homing/stepping checks)​

⚠️ Important: The exact P↔sensor mapping depends on how you connect
motion.digital-in-* in your HAL. The sample sim maps those pins one way;
your real machine can map them differently — just keep the HAL nets
(arm-in/out, tool-locked/released, index/pulse) consistent with the
macros’ expectations.

How to switch between Index and Gray
code

●​ Use the corresponding INI that sources the right HAL file:​

○​ Index: vmc_index_metric.ini + toolchange_index.hal
(encoding=index)​

○​ Gray: vmc_graycode_metric.ini + toolchange_gray.hal
(encoding=gray num_sense=4)​

●​ Wire sensors accordingly.​

●​ [ATC]POCKETS must match your real carousel.​

Common pitfalls (and quick fixes)

●​ Carousel doesn’t move / UI not updating​

○​ Check carousel.0.enable is true.​

○​ halcmd show pin carousel.0 and confirm .ready toggles.​

○​ Verify the analog→s32 bridge to pocket-number is connected.​

●​ M6 aborts with “not homed”​

○​ Run M13 first; it sets #3989 and aligns #3990.​

●​ Wrong pocket numbers (Gray code)​

○​ Swap your bit wires until the pocket number increments in the right order (Gray
bit order must match sense-0..3).​

●​ M64/M66 P numbers “don’t match my wiring”​

○​ Leave the macros alone; remap HAL nets to your hardware pins so that
motion.digital-* indices line up.​

	What you’ve got in this sample
	The INI: where the big picture lives
	[DISPLAY]
	[RS274NGC] (remaps + macros)
	[ATC] (parameters that drive the macros & UI)
	[HAL]

	The HAL: what’s wired to what
	1) The carousel component
	2) Motor drive & sensors (index mode mapping)
	3) The sim “plant”

	The G-code macros (how M6 actually works)
	Running the sim (quick sanity test)
	Adapting this sample to a real machine (incl. EtherCAT)
	Quick “cheat sheet” of signals used by the macros
	How to switch between Index and Gray code
	Common pitfalls (and quick fixes)

